Optimal. Leaf size=28 \[ e^{-\frac {e^5}{-5-e}-8 e^{-x} x+4 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \left (-8+8 x+8 e^x x\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 8 \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \left (-1+x+e^x x\right ) \, dx\\ &=8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \left (-1+x+e^x x\right ) \, dx\\ &=8 \int \left (-\exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right )+\exp \left (\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x+\exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x\right ) \, dx\\ &=-\left (8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \, dx\right )+8 \int \exp \left (\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x \, dx+8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x \, dx\\ &=-\left (8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \, dx\right )+8 \int \exp \left (\frac {e^{-x} \left (-40 \left (1+\frac {e}{5}\right ) x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x \, dx+8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x \, dx\\ &=-\left (8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) \, dx\right )+8 \int e^{-8 e^{-x} x+\frac {e^5+20 x^2+4 e x^2}{5+e}} x \, dx+8 \int \exp \left (-x+\frac {e^{-x} \left (-40 x-8 e x+e^x \left (e^5+20 x^2+4 e x^2\right )\right )}{5+e}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 25, normalized size = 0.89 \begin {gather*} e^{\frac {e^5}{5+e}-8 e^{-x} x+4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 51, normalized size = 1.82 \begin {gather*} e^{\left (x - \frac {{\left (8 \, x e - {\left (20 \, x^{2} + {\left (4 \, x^{2} - x\right )} e - 5 \, x + e^{5}\right )} e^{x} + 40 \, x\right )} e^{\left (-x\right )}}{e + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 8 \, {\left (x e^{x} + x - 1\right )} e^{\left (-x - \frac {{\left (8 \, x e - {\left (4 \, x^{2} e + 20 \, x^{2} + e^{5}\right )} e^{x} + 40 \, x\right )} e^{\left (-x\right )}}{e + 5}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 40, normalized size = 1.43
method | result | size |
norman | \({\mathrm e}^{\frac {\left (\left ({\mathrm e}^{5}+4 x^{2} {\mathrm e}+20 x^{2}\right ) {\mathrm e}^{x}-8 x \,{\mathrm e}-40 x \right ) {\mathrm e}^{-x}}{{\mathrm e}+5}}\) | \(40\) |
risch | \({\mathrm e}^{-\frac {\left (-20 \,{\mathrm e}^{x} x^{2}-4 x^{2} {\mathrm e}^{x +1}+8 x \,{\mathrm e}-{\mathrm e}^{5+x}+40 x \right ) {\mathrm e}^{-x}}{{\mathrm e}+5}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 63, normalized size = 2.25 \begin {gather*} e^{\left (\frac {4 \, x^{2} e}{e + 5} + \frac {20 \, x^{2}}{e + 5} - \frac {40 \, x e^{\left (-x\right )}}{e + 5} - \frac {8 \, x e^{\left (-x + 1\right )}}{e + 5} + \frac {e^{5}}{e + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.29, size = 67, normalized size = 2.39 \begin {gather*} {\mathrm {e}}^{-\frac {8\,x\,{\mathrm {e}}^{-x}\,\mathrm {e}}{\mathrm {e}+5}}\,{\mathrm {e}}^{\frac {4\,x^2\,\mathrm {e}}{\mathrm {e}+5}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^5}{\mathrm {e}+5}}\,{\mathrm {e}}^{-\frac {40\,x\,{\mathrm {e}}^{-x}}{\mathrm {e}+5}}\,{\mathrm {e}}^{\frac {20\,x^2}{\mathrm {e}+5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 39, normalized size = 1.39 \begin {gather*} e^{\frac {\left (- 40 x - 8 e x + \left (4 e x^{2} + 20 x^{2} + e^{5}\right ) e^{x}\right ) e^{- x}}{e + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________