Optimal. Leaf size=20 \[ \frac {x+\frac {1}{x+x \left (25+\log \left (5+\frac {1}{x^2}\right )\right )}}{e^4} \]
________________________________________________________________________________________
Rubi [F] time = 0.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24+546 x^2+3380 x^4+\left (-1+47 x^2+260 x^4\right ) \log \left (\frac {1+5 x^2}{x^2}\right )+\left (x^2+5 x^4\right ) \log ^2\left (\frac {1+5 x^2}{x^2}\right )}{e^4 \left (676 x^2+3380 x^4\right )+e^4 \left (52 x^2+260 x^4\right ) \log \left (\frac {1+5 x^2}{x^2}\right )+e^4 \left (x^2+5 x^4\right ) \log ^2\left (\frac {1+5 x^2}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-24+546 x^2+3380 x^4+\left (-1+47 x^2+260 x^4\right ) \log \left (5+\frac {1}{x^2}\right )+\left (x^2+5 x^4\right ) \log ^2\left (5+\frac {1}{x^2}\right )}{e^4 x^2 \left (1+5 x^2\right ) \left (26+\log \left (5+\frac {1}{x^2}\right )\right )^2} \, dx\\ &=\frac {\int \frac {-24+546 x^2+3380 x^4+\left (-1+47 x^2+260 x^4\right ) \log \left (5+\frac {1}{x^2}\right )+\left (x^2+5 x^4\right ) \log ^2\left (5+\frac {1}{x^2}\right )}{x^2 \left (1+5 x^2\right ) \left (26+\log \left (5+\frac {1}{x^2}\right )\right )^2} \, dx}{e^4}\\ &=\frac {\int \left (1+\frac {2}{x^2 \left (1+5 x^2\right ) \left (26+\log \left (5+\frac {1}{x^2}\right )\right )^2}-\frac {1}{x^2 \left (26+\log \left (5+\frac {1}{x^2}\right )\right )}\right ) \, dx}{e^4}\\ &=\frac {x}{e^4}-\frac {\int \frac {1}{x^2 \left (26+\log \left (5+\frac {1}{x^2}\right )\right )} \, dx}{e^4}+\frac {2 \int \frac {1}{x^2 \left (1+5 x^2\right ) \left (26+\log \left (5+\frac {1}{x^2}\right )\right )^2} \, dx}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 1.00 \begin {gather*} \frac {x+\frac {1}{x \left (26+\log \left (5+\frac {1}{x^2}\right )\right )}}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 48, normalized size = 2.40 \begin {gather*} \frac {x^{2} \log \left (\frac {5 \, x^{2} + 1}{x^{2}}\right ) + 26 \, x^{2} + 1}{x e^{4} \log \left (\frac {5 \, x^{2} + 1}{x^{2}}\right ) + 26 \, x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 48, normalized size = 2.40 \begin {gather*} \frac {x^{2} \log \left (\frac {5 \, x^{2} + 1}{x^{2}}\right ) + 26 \, x^{2} + 1}{x e^{4} \log \left (\frac {5 \, x^{2} + 1}{x^{2}}\right ) + 26 \, x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 28, normalized size = 1.40
method | result | size |
risch | \(x \,{\mathrm e}^{-4}+\frac {{\mathrm e}^{-4}}{x \left (\ln \left (\frac {5 x^{2}+1}{x^{2}}\right )+26\right )}\) | \(28\) |
norman | \(\frac {{\mathrm e}^{-4}+x^{2} {\mathrm e}^{-4} \ln \left (\frac {5 x^{2}+1}{x^{2}}\right )+26 x^{2} {\mathrm e}^{-4}}{x \left (\ln \left (\frac {5 x^{2}+1}{x^{2}}\right )+26\right )}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 54, normalized size = 2.70 \begin {gather*} \frac {x^{2} \log \left (5 \, x^{2} + 1\right ) - 2 \, x^{2} \log \relax (x) + 26 \, x^{2} + 1}{x e^{4} \log \left (5 \, x^{2} + 1\right ) - 2 \, x e^{4} \log \relax (x) + 26 \, x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 45, normalized size = 2.25 \begin {gather*} \frac {{\mathrm {e}}^{-4}\,\left (x^2\,\ln \left (\frac {5\,x^2+1}{x^2}\right )+26\,x^2+1\right )}{x\,\left (\ln \left (\frac {5\,x^2+1}{x^2}\right )+26\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 29, normalized size = 1.45 \begin {gather*} \frac {x}{e^{4}} + \frac {1}{x e^{4} \log {\left (\frac {5 x^{2} + 1}{x^{2}} \right )} + 26 x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________