Optimal. Leaf size=23 \[ \frac {20 \left (2+e^{4 x^2}\right ) x}{-\frac {1}{x}-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 35, normalized size of antiderivative = 1.52, number of steps used = 11, number of rules used = 8, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.205, Rules used = {28, 6742, 261, 6715, 2199, 2194, 2177, 2178} \begin {gather*} -20 e^{4 x^2}+\frac {20 e^{4 x^2}}{x^2+1}+\frac {40}{x^2+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 261
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6715
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-80 x+e^{4 x^2} \left (-40 x-160 x^3-160 x^5\right )}{\left (1+x^2\right )^2} \, dx\\ &=\int \left (-\frac {80 x}{\left (1+x^2\right )^2}-\frac {40 e^{4 x^2} x \left (1+2 x^2\right )^2}{\left (1+x^2\right )^2}\right ) \, dx\\ &=-\left (40 \int \frac {e^{4 x^2} x \left (1+2 x^2\right )^2}{\left (1+x^2\right )^2} \, dx\right )-80 \int \frac {x}{\left (1+x^2\right )^2} \, dx\\ &=\frac {40}{1+x^2}-20 \operatorname {Subst}\left (\int \frac {e^{4 x} (1+2 x)^2}{(1+x)^2} \, dx,x,x^2\right )\\ &=\frac {40}{1+x^2}-20 \operatorname {Subst}\left (\int \left (4 e^{4 x}+\frac {e^{4 x}}{(1+x)^2}-\frac {4 e^{4 x}}{1+x}\right ) \, dx,x,x^2\right )\\ &=\frac {40}{1+x^2}-20 \operatorname {Subst}\left (\int \frac {e^{4 x}}{(1+x)^2} \, dx,x,x^2\right )-80 \operatorname {Subst}\left (\int e^{4 x} \, dx,x,x^2\right )+80 \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,x^2\right )\\ &=-20 e^{4 x^2}+\frac {40}{1+x^2}+\frac {20 e^{4 x^2}}{1+x^2}+\frac {80 \text {Ei}\left (4 \left (1+x^2\right )\right )}{e^4}-80 \operatorname {Subst}\left (\int \frac {e^{4 x}}{1+x} \, dx,x,x^2\right )\\ &=-20 e^{4 x^2}+\frac {40}{1+x^2}+\frac {20 e^{4 x^2}}{1+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 22, normalized size = 0.96 \begin {gather*} -\frac {20 \left (-2+e^{4 x^2} x^2\right )}{1+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 21, normalized size = 0.91 \begin {gather*} -\frac {20 \, {\left (x^{2} e^{\left (4 \, x^{2}\right )} - 2\right )}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.91 \begin {gather*} -\frac {20 \, {\left (x^{2} e^{\left (4 \, x^{2}\right )} - 2\right )}}{x^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.96
method | result | size |
norman | \(\frac {-20 x^{2} {\mathrm e}^{4 x^{2}}+40}{x^{2}+1}\) | \(22\) |
risch | \(\frac {40}{x^{2}+1}-\frac {20 x^{2} {\mathrm e}^{4 x^{2}}}{x^{2}+1}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {20 \, x^{2} e^{\left (4 \, x^{2}\right )}}{x^{2} + 1} + \frac {20 \, e^{\left (-4\right )} E_{2}\left (-4 \, x^{2} - 4\right )}{x^{2} + 1} + \frac {40}{x^{2} + 1} + 40 \, \int \frac {x e^{\left (4 \, x^{2}\right )}}{x^{4} + 2 \, x^{2} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.87 \begin {gather*} -\frac {20\,x^2\,\left ({\mathrm {e}}^{4\,x^2}+2\right )}{x^2+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.04 \begin {gather*} - \frac {20 x^{2} e^{4 x^{2}}}{x^{2} + 1} + \frac {80}{2 x^{2} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________