Optimal. Leaf size=32 \[ \frac {5}{\left (5-\frac {e^{\frac {x}{-1+3 x}}}{5 x}+x\right ) (-3+4 x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2125 x^2+11750 x^3-13125 x^4-9000 x^5+e^{\frac {x}{-1+3 x}} \left (75-375 x+575 x^2\right )}{5625 x^2-46500 x^3+131350 x^4-136700 x^5+18025 x^6+28200 x^7+3600 x^8+e^{\frac {2 x}{-1+3 x}} \left (9-78 x+241 x^2-312 x^3+144 x^4\right )+e^{\frac {x}{-1+3 x}} \left (-450 x+3810 x^2-11270 x^3+13190 x^4-4080 x^5-1440 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 \left (-5 (1-3 x)^2 x^2 (17+8 x)+e^{\frac {x}{-1+3 x}} \left (3-15 x+23 x^2\right )\right )}{\left (3-13 x+12 x^2\right )^2 \left (e^{\frac {x}{-1+3 x}}-5 x (5+x)\right )^2} \, dx\\ &=25 \int \frac {-5 (1-3 x)^2 x^2 (17+8 x)+e^{\frac {x}{-1+3 x}} \left (3-15 x+23 x^2\right )}{\left (3-13 x+12 x^2\right )^2 \left (e^{\frac {x}{-1+3 x}}-5 x (5+x)\right )^2} \, dx\\ &=25 \int \left (-\frac {3-15 x+23 x^2}{(-1+3 x)^2 (-3+4 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )}-\frac {5 x \left (5-23 x+34 x^2+18 x^3\right )}{(-1+3 x)^2 (-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2}\right ) \, dx\\ &=-\left (25 \int \frac {3-15 x+23 x^2}{(-1+3 x)^2 (-3+4 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )} \, dx\right )-125 \int \frac {x \left (5-23 x+34 x^2+18 x^3\right )}{(-1+3 x)^2 (-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2} \, dx\\ &=-\left (25 \int \left (\frac {1}{5 (-1+3 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )}+\frac {9}{25 (-1+3 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )}+\frac {3}{(-3+4 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )}-\frac {12}{25 (-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )}\right ) \, dx\right )-125 \int \left (\frac {119}{72 \left (e^{\frac {x}{-1+3 x}}-25 x-5 x^2\right )^2}+\frac {x}{2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2}-\frac {16}{45 (-1+3 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2}-\frac {229}{225 (-1+3 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2}+\frac {1389}{200 (-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{(-1+3 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )} \, dx\right )-9 \int \frac {1}{(-1+3 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )} \, dx+12 \int \frac {1}{(-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )} \, dx+\frac {400}{9} \int \frac {1}{(-1+3 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2} \, dx-\frac {125}{2} \int \frac {x}{\left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2} \, dx-75 \int \frac {1}{(-3+4 x)^2 \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )} \, dx+\frac {1145}{9} \int \frac {1}{(-1+3 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2} \, dx-\frac {14875}{72} \int \frac {1}{\left (e^{\frac {x}{-1+3 x}}-25 x-5 x^2\right )^2} \, dx-\frac {6945}{8} \int \frac {1}{(-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+25 x+5 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 32, normalized size = 1.00 \begin {gather*} \frac {25 x}{(-3+4 x) \left (-e^{\frac {x}{-1+3 x}}+5 x (5+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 36, normalized size = 1.12 \begin {gather*} \frac {25 \, x}{20 \, x^{3} + 85 \, x^{2} - {\left (4 \, x - 3\right )} e^{\left (\frac {x}{3 \, x - 1}\right )} - 75 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.06, size = 149, normalized size = 4.66 \begin {gather*} \frac {25 \, {\left (\frac {x}{3 \, x - 1} - \frac {6 \, x^{2}}{{\left (3 \, x - 1\right )}^{2}} + \frac {9 \, x^{3}}{{\left (3 \, x - 1\right )}^{3}}\right )}}{\frac {23 \, x e^{\left (\frac {x}{3 \, x - 1}\right )}}{3 \, x - 1} - \frac {57 \, x^{2} e^{\left (\frac {x}{3 \, x - 1}\right )}}{{\left (3 \, x - 1\right )}^{2}} + \frac {45 \, x^{3} e^{\left (\frac {x}{3 \, x - 1}\right )}}{{\left (3 \, x - 1\right )}^{3}} - \frac {75 \, x}{3 \, x - 1} + \frac {365 \, x^{2}}{{\left (3 \, x - 1\right )}^{2}} - \frac {400 \, x^{3}}{{\left (3 \, x - 1\right )}^{3}} - 3 \, e^{\left (\frac {x}{3 \, x - 1}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.98, size = 34, normalized size = 1.06
method | result | size |
risch | \(\frac {25 x}{\left (4 x -3\right ) \left (5 x^{2}+25 x -{\mathrm e}^{\frac {x}{3 x -1}}\right )}\) | \(34\) |
norman | \(\frac {75 x^{2}-25 x}{60 x^{4}+235 x^{3}-12 \,{\mathrm e}^{\frac {x}{3 x -1}} x^{2}-310 x^{2}+13 x \,{\mathrm e}^{\frac {x}{3 x -1}}+75 x -3 \,{\mathrm e}^{\frac {x}{3 x -1}}}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {2125\,x^2-{\mathrm {e}}^{\frac {x}{3\,x-1}}\,\left (575\,x^2-375\,x+75\right )-11750\,x^3+13125\,x^4+9000\,x^5}{{\mathrm {e}}^{\frac {2\,x}{3\,x-1}}\,\left (144\,x^4-312\,x^3+241\,x^2-78\,x+9\right )-{\mathrm {e}}^{\frac {x}{3\,x-1}}\,\left (1440\,x^6+4080\,x^5-13190\,x^4+11270\,x^3-3810\,x^2+450\,x\right )+5625\,x^2-46500\,x^3+131350\,x^4-136700\,x^5+18025\,x^6+28200\,x^7+3600\,x^8} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 31, normalized size = 0.97 \begin {gather*} - \frac {25 x}{- 20 x^{3} - 85 x^{2} + 75 x + \left (4 x - 3\right ) e^{\frac {x}{3 x - 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________