Optimal. Leaf size=24 \[ \frac {x}{\left (5 e^{2 e^{-e^2} x}+\frac {5}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 e^{e^2} x^2+e^{2 e^{-e^2} x} \left (e^{e^2} x^3-4 x^4\right )}{25 e^{e^2}+75 e^{e^2+2 e^{-e^2} x} x+75 e^{e^2+4 e^{-e^2} x} x^2+25 e^{e^2+6 e^{-e^2} x} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^2} x^2 \left (3 e^{e^2}+e^{e^2+2 e^{-e^2} x} x-4 e^{2 e^{-e^2} x} x^2\right )}{25 \left (1+e^{2 e^{-e^2} x} x\right )^3} \, dx\\ &=\frac {1}{25} e^{-e^2} \int \frac {x^2 \left (3 e^{e^2}+e^{e^2+2 e^{-e^2} x} x-4 e^{2 e^{-e^2} x} x^2\right )}{\left (1+e^{2 e^{-e^2} x} x\right )^3} \, dx\\ &=\frac {1}{25} e^{-e^2} \int \left (\frac {2 x^2 \left (e^{e^2}+2 x\right )}{\left (1+e^{2 e^{-e^2} x} x\right )^3}+\frac {\left (e^{e^2}-4 x\right ) x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^2}\right ) \, dx\\ &=\frac {1}{25} e^{-e^2} \int \frac {\left (e^{e^2}-4 x\right ) x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^2} \, dx+\frac {1}{25} \left (2 e^{-e^2}\right ) \int \frac {x^2 \left (e^{e^2}+2 x\right )}{\left (1+e^{2 e^{-e^2} x} x\right )^3} \, dx\\ &=\frac {1}{25} e^{-e^2} \int \left (\frac {e^{e^2} x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^2}-\frac {4 x^3}{\left (1+e^{2 e^{-e^2} x} x\right )^2}\right ) \, dx+\frac {1}{25} \left (2 e^{-e^2}\right ) \int \left (\frac {e^{e^2} x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^3}+\frac {2 x^3}{\left (1+e^{2 e^{-e^2} x} x\right )^3}\right ) \, dx\\ &=\frac {1}{25} \int \frac {x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^2} \, dx+\frac {2}{25} \int \frac {x^2}{\left (1+e^{2 e^{-e^2} x} x\right )^3} \, dx+\frac {1}{25} \left (4 e^{-e^2}\right ) \int \frac {x^3}{\left (1+e^{2 e^{-e^2} x} x\right )^3} \, dx-\frac {1}{25} \left (4 e^{-e^2}\right ) \int \frac {x^3}{\left (1+e^{2 e^{-e^2} x} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 25, normalized size = 1.04 \begin {gather*} \frac {x^3}{25 \left (1+e^{2 e^{-e^2} x} x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 61, normalized size = 2.54 \begin {gather*} \frac {x^{3} e^{\left (2 \, e^{2}\right )}}{25 \, {\left (x^{2} e^{\left (2 \, {\left (2 \, x + e^{\left (e^{2} + 2\right )}\right )} e^{\left (-e^{2}\right )}\right )} + 2 \, x e^{\left ({\left (2 \, x + e^{\left (e^{2} + 2\right )}\right )} e^{\left (-e^{2}\right )} + e^{2}\right )} + e^{\left (2 \, e^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 199, normalized size = 8.29 \begin {gather*} \frac {8 \, x^{6} e^{\left (-2 \, e^{2}\right )} + 12 \, x^{5} e^{\left (-e^{2}\right )} + 6 \, x^{4} + x^{3} e^{\left (e^{2}\right )}}{25 \, {\left (8 \, x^{5} e^{\left (4 \, x e^{\left (-e^{2}\right )} - 2 \, e^{2}\right )} + 12 \, x^{4} e^{\left (4 \, x e^{\left (-e^{2}\right )} - e^{2}\right )} + 16 \, x^{4} e^{\left (2 \, x e^{\left (-e^{2}\right )} - 2 \, e^{2}\right )} + 6 \, x^{3} e^{\left (4 \, x e^{\left (-e^{2}\right )}\right )} + 24 \, x^{3} e^{\left (2 \, x e^{\left (-e^{2}\right )} - e^{2}\right )} + 8 \, x^{3} e^{\left (-2 \, e^{2}\right )} + 12 \, x^{2} e^{\left (2 \, x e^{\left (-e^{2}\right )}\right )} + x^{2} e^{\left (4 \, x e^{\left (-e^{2}\right )} + e^{2}\right )} + 12 \, x^{2} e^{\left (-e^{2}\right )} + 2 \, x e^{\left (2 \, x e^{\left (-e^{2}\right )} + e^{2}\right )} + 6 \, x + e^{\left (e^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.66, size = 21, normalized size = 0.88
method | result | size |
norman | \(\frac {x^{3}}{25 \left (x \,{\mathrm e}^{2 x \,{\mathrm e}^{-{\mathrm e}^{2}}}+1\right )^{2}}\) | \(21\) |
risch | \(\frac {x^{3}}{25 \left (x \,{\mathrm e}^{2 x \,{\mathrm e}^{-{\mathrm e}^{2}}}+1\right )^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 34, normalized size = 1.42 \begin {gather*} \frac {x^{3}}{25 \, {\left (x^{2} e^{\left (4 \, x e^{\left (-e^{2}\right )}\right )} + 2 \, x e^{\left (2 \, x e^{\left (-e^{2}\right )}\right )} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 34, normalized size = 1.42 \begin {gather*} \frac {x^3}{50\,x\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-{\mathrm {e}}^2}}+25\,x^2\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{-{\mathrm {e}}^2}}+25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 32, normalized size = 1.33 \begin {gather*} \frac {x^{3}}{25 x^{2} e^{\frac {4 x}{e^{e^{2}}}} + 50 x e^{\frac {2 x}{e^{e^{2}}}} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________