Optimal. Leaf size=25 \[ x \left (-3+x+4 \left (3+e^2\right ) \left (-\frac {2 e^4}{3}+x+\log ^2(x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 41, normalized size of antiderivative = 1.64, number of steps used = 6, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 12, 2295, 2296} \begin {gather*} \left (13+4 e^2\right ) x^2-\frac {1}{3} \left (9+24 e^4+8 e^6\right ) x+4 \left (3+e^2\right ) x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2295
Rule 2296
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{3} \left (-9+e^4 \left (-24-8 e^2\right )+\left (78+24 e^2\right ) x+\left (72+24 e^2\right ) \log (x)+\left (36+12 e^2\right ) \log ^2(x)\right ) \, dx\\ &=\frac {1}{3} \int \left (-9+e^4 \left (-24-8 e^2\right )+\left (78+24 e^2\right ) x+\left (72+24 e^2\right ) \log (x)+\left (36+12 e^2\right ) \log ^2(x)\right ) \, dx\\ &=-\frac {1}{3} \left (9+24 e^4+8 e^6\right ) x+\left (13+4 e^2\right ) x^2+\left (4 \left (3+e^2\right )\right ) \int \log ^2(x) \, dx+\left (8 \left (3+e^2\right )\right ) \int \log (x) \, dx\\ &=-8 \left (3+e^2\right ) x-\frac {1}{3} \left (9+24 e^4+8 e^6\right ) x+\left (13+4 e^2\right ) x^2+8 \left (3+e^2\right ) x \log (x)+4 \left (3+e^2\right ) x \log ^2(x)-\left (8 \left (3+e^2\right )\right ) \int \log (x) \, dx\\ &=-\frac {1}{3} \left (9+24 e^4+8 e^6\right ) x+\left (13+4 e^2\right ) x^2+4 \left (3+e^2\right ) x \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 48, normalized size = 1.92 \begin {gather*} -3 x-8 e^4 x-\frac {8 e^6 x}{3}+13 x^2+4 e^2 x^2+12 x \log ^2(x)+4 e^2 x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 40, normalized size = 1.60 \begin {gather*} 4 \, x^{2} e^{2} + 4 \, {\left (x e^{2} + 3 \, x\right )} \log \relax (x)^{2} + 13 \, x^{2} - \frac {8}{3} \, x e^{6} - 8 \, x e^{4} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 60, normalized size = 2.40 \begin {gather*} -\frac {8}{3} \, x {\left (e^{2} + 3\right )} e^{4} + 4 \, x^{2} e^{2} + 13 \, x^{2} + 4 \, {\left (x \log \relax (x)^{2} - 2 \, x \log \relax (x) + 2 \, x\right )} {\left (e^{2} + 3\right )} + 8 \, {\left (x \log \relax (x) - x\right )} {\left (e^{2} + 3\right )} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 38, normalized size = 1.52
method | result | size |
norman | \(\left (4 \,{\mathrm e}^{2}+13\right ) x^{2}+\left (-\frac {8 \,{\mathrm e}^{2} {\mathrm e}^{4}}{3}-8 \,{\mathrm e}^{4}-3\right ) x +\left (4 \,{\mathrm e}^{2}+12\right ) x \ln \relax (x )^{2}\) | \(38\) |
risch | \(4 x \,{\mathrm e}^{2} \ln \relax (x )^{2}+12 x \ln \relax (x )^{2}-3 x -\frac {8 x \,{\mathrm e}^{6}}{3}-8 x \,{\mathrm e}^{4}+4 x^{2} {\mathrm e}^{2}+13 x^{2}\) | \(43\) |
default | \(13 x^{2}-3 x +\frac {\left (-8 \,{\mathrm e}^{2}-24\right ) {\mathrm e}^{4} x}{3}+4 x \,{\mathrm e}^{2} \ln \relax (x )^{2}+12 x \ln \relax (x )^{2}+4 x^{2} {\mathrm e}^{2}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 56, normalized size = 2.24 \begin {gather*} 4 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x {\left (e^{2} + 3\right )} - \frac {8}{3} \, x {\left (e^{2} + 3\right )} e^{4} + 4 \, x^{2} e^{2} + 13 \, x^{2} + 8 \, {\left (x \log \relax (x) - x\right )} {\left (e^{2} + 3\right )} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 36, normalized size = 1.44 \begin {gather*} x^2\,\left (4\,{\mathrm {e}}^2+13\right )-x\,\left (8\,{\mathrm {e}}^4+\frac {8\,{\mathrm {e}}^6}{3}-\frac {{\ln \relax (x)}^2\,\left (12\,{\mathrm {e}}^2+36\right )}{3}+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 41, normalized size = 1.64 \begin {gather*} x^{2} \left (13 + 4 e^{2}\right ) + x \left (- \frac {8 e^{6}}{3} - 8 e^{4} - 3\right ) + \left (12 x + 4 x e^{2}\right ) \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________