Optimal. Leaf size=24 \[ \frac {x^2 \left (e^3+x\right )}{4+e^2-5 x+4 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 64, normalized size of antiderivative = 2.67, number of steps used = 6, number of rules used = 6, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.072, Rules used = {6, 1680, 12, 1814, 21, 8} \begin {gather*} \frac {x}{4}-\frac {-8 \left (9-4 e^2+20 e^3\right ) \left (x-\frac {5}{8}\right )+32 e^5+28 e^3+60 e^2+115}{8 \left (64 \left (x-\frac {5}{8}\right )^2+16 e^2+39\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 8
Rule 12
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (12+3 e^2\right ) x^2-10 x^3+4 x^4+e^3 \left (8 x+2 e^2 x-5 x^2\right )}{16+e^4-40 x+57 x^2-40 x^3+16 x^4+e^2 \left (8-10 x+8 x^2\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {5 \left (39+16 e^2\right ) \left (15+16 e^3\right )+64 \left (115+60 e^2+28 e^3+32 e^5\right ) x+128 \left (21+24 e^2-40 e^3\right ) x^2+4096 x^4}{4 \left (39+16 e^2+64 x^2\right )^2} \, dx,x,-\frac {5}{8}+x\right )\\ &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {5 \left (39+16 e^2\right ) \left (15+16 e^3\right )+64 \left (115+60 e^2+28 e^3+32 e^5\right ) x+128 \left (21+24 e^2-40 e^3\right ) x^2+4096 x^4}{\left (39+16 e^2+64 x^2\right )^2} \, dx,x,-\frac {5}{8}+x\right )\\ &=-\frac {115+60 e^2+28 e^3+32 e^5+\left (9-4 e^2+20 e^3\right ) (5-8 x)}{8 \left (39+16 e^2+(-5+8 x)^2\right )}-\frac {\operatorname {Subst}\left (\int \frac {-2 \left (39+16 e^2\right )^2-128 \left (39+16 e^2\right ) x^2}{39+16 e^2+64 x^2} \, dx,x,-\frac {5}{8}+x\right )}{8 \left (39+16 e^2\right )}\\ &=-\frac {115+60 e^2+28 e^3+32 e^5+\left (9-4 e^2+20 e^3\right ) (5-8 x)}{8 \left (39+16 e^2+(-5+8 x)^2\right )}+\frac {1}{4} \operatorname {Subst}\left (\int 1 \, dx,x,-\frac {5}{8}+x\right )\\ &=\frac {x}{4}-\frac {115+60 e^2+28 e^3+32 e^5+\left (9-4 e^2+20 e^3\right ) (5-8 x)}{8 \left (39+16 e^2+(-5+8 x)^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 54, normalized size = 2.25 \begin {gather*} \frac {-20-5 e^2-4 e^5+25 x-20 x^2+16 x^3+4 e^3 (-4+5 x)}{16 \left (4+e^2-5 x+4 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 48, normalized size = 2.00 \begin {gather*} \frac {16 \, x^{3} - 20 \, x^{2} + 4 \, {\left (5 \, x - 4\right )} e^{3} + 25 \, x - 4 \, e^{5} - 5 \, e^{2} - 20}{16 \, {\left (4 \, x^{2} - 5 \, x + e^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, x^{4} - 10 \, x^{3} + 3 \, x^{2} e^{2} + 12 \, x^{2} - {\left (5 \, x^{2} - 2 \, x e^{2} - 8 \, x\right )} e^{3}}{16 \, x^{4} - 40 \, x^{3} + 57 \, x^{2} + 2 \, {\left (4 \, x^{2} - 5 \, x + 4\right )} e^{2} - 40 \, x + e^{4} + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 35, normalized size = 1.46
method | result | size |
norman | \(\frac {x^{3}+\frac {5 x \,{\mathrm e}^{3}}{4}-\frac {{\mathrm e}^{2} {\mathrm e}^{3}}{4}-{\mathrm e}^{3}}{4+4 x^{2}-5 x +{\mathrm e}^{2}}\) | \(35\) |
gosper | \(-\frac {-4 x^{3}+{\mathrm e}^{2} {\mathrm e}^{3}-5 x \,{\mathrm e}^{3}+4 \,{\mathrm e}^{3}}{4 \left (4+4 x^{2}-5 x +{\mathrm e}^{2}\right )}\) | \(37\) |
risch | \(\frac {x}{4}+\frac {\frac {\left (5 \,{\mathrm e}^{3}-{\mathrm e}^{2}+\frac {9}{4}\right ) x}{4}-\frac {{\mathrm e}^{5}}{4}-{\mathrm e}^{3}-\frac {5 \,{\mathrm e}^{2}}{16}-\frac {5}{4}}{4+4 x^{2}-5 x +{\mathrm e}^{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 46, normalized size = 1.92 \begin {gather*} \frac {1}{4} \, x + \frac {x {\left (20 \, e^{3} - 4 \, e^{2} + 9\right )} - 4 \, e^{5} - 16 \, e^{3} - 5 \, e^{2} - 20}{16 \, {\left (4 \, x^{2} - 5 \, x + e^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 47, normalized size = 1.96 \begin {gather*} \frac {x}{4}-\frac {\frac {5\,{\mathrm {e}}^2}{4}+4\,{\mathrm {e}}^3+{\mathrm {e}}^5-x\,\left (5\,{\mathrm {e}}^3-{\mathrm {e}}^2+\frac {9}{4}\right )+5}{16\,x^2-20\,x+4\,{\mathrm {e}}^2+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.43, size = 48, normalized size = 2.00 \begin {gather*} \frac {x}{4} + \frac {x \left (- 4 e^{2} + 9 + 20 e^{3}\right ) - 4 e^{5} - 16 e^{3} - 5 e^{2} - 20}{64 x^{2} - 80 x + 64 + 16 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________