Optimal. Leaf size=19 \[ x^2 (x+\log (4))^2 \log ^2(\log (x) \log (\log (4))) \]
________________________________________________________________________________________
Rubi [F] time = 1.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2 x^3+4 x^2 \log (4)+2 x \log ^2(4)\right ) \log (\log (x) \log (\log (4)))+\left (4 x^3+6 x^2 \log (4)+2 x \log ^2(4)\right ) \log (x) \log ^2(\log (x) \log (\log (4)))}{\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x (x+\log (4)) \log (\log (x) \log (\log (4))) (x+\log (4)+(2 x+\log (4)) \log (x) \log (\log (x) \log (\log (4))))}{\log (x)} \, dx\\ &=2 \int \frac {x (x+\log (4)) \log (\log (x) \log (\log (4))) (x+\log (4)+(2 x+\log (4)) \log (x) \log (\log (x) \log (\log (4))))}{\log (x)} \, dx\\ &=2 \int \left (\frac {x (x+\log (4))^2 \log (\log (x) \log (\log (4)))}{\log (x)}+x (x+\log (4)) (2 x+\log (4)) \log ^2(\log (x) \log (\log (4)))\right ) \, dx\\ &=2 \int \frac {x (x+\log (4))^2 \log (\log (x) \log (\log (4)))}{\log (x)} \, dx+2 \int x (x+\log (4)) (2 x+\log (4)) \log ^2(\log (x) \log (\log (4))) \, dx\\ &=2 \int \left (\frac {x^3 \log (\log (x) \log (\log (4)))}{\log (x)}+\frac {2 x^2 \log (4) \log (\log (x) \log (\log (4)))}{\log (x)}+\frac {x \log ^2(4) \log (\log (x) \log (\log (4)))}{\log (x)}\right ) \, dx+2 \int \left (2 x^3 \log ^2(\log (x) \log (\log (4)))+3 x^2 \log (4) \log ^2(\log (x) \log (\log (4)))+x \log ^2(4) \log ^2(\log (x) \log (\log (4)))\right ) \, dx\\ &=2 \int \frac {x^3 \log (\log (x) \log (\log (4)))}{\log (x)} \, dx+4 \int x^3 \log ^2(\log (x) \log (\log (4))) \, dx+(4 \log (4)) \int \frac {x^2 \log (\log (x) \log (\log (4)))}{\log (x)} \, dx+(6 \log (4)) \int x^2 \log ^2(\log (x) \log (\log (4))) \, dx+\left (2 \log ^2(4)\right ) \int \frac {x \log (\log (x) \log (\log (4)))}{\log (x)} \, dx+\left (2 \log ^2(4)\right ) \int x \log ^2(\log (x) \log (\log (4))) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 19, normalized size = 1.00 \begin {gather*} x^2 (x+\log (4))^2 \log ^2(\log (x) \log (\log (4))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 32, normalized size = 1.68 \begin {gather*} {\left (x^{4} + 4 \, x^{3} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2}\right )} \log \left (\log \relax (x) \log \left (2 \, \log \relax (2)\right )\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 134, normalized size = 7.05 \begin {gather*} x^{4} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + 4 \, x^{3} \log \relax (2) \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + 4 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + 2 \, x^{4} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right ) \log \left (\log \relax (x)\right ) + 8 \, x^{3} \log \relax (2) \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right ) \log \left (\log \relax (x)\right ) + 8 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right ) \log \left (\log \relax (x)\right ) + x^{4} \log \left (\log \relax (x)\right )^{2} + 4 \, x^{3} \log \relax (2) \log \left (\log \relax (x)\right )^{2} + 4 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.79
method | result | size |
risch | \(\left (4 x^{2} \ln \relax (2)^{2}+4 x^{3} \ln \relax (2)+x^{4}\right ) \ln \left (\ln \relax (x ) \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )\right )^{2}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 121, normalized size = 6.37 \begin {gather*} x^{4} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + 4 \, x^{3} \log \relax (2) \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + 4 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )^{2} + {\left (x^{4} + 4 \, x^{3} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2}\right )} \log \left (\log \relax (x)\right )^{2} + 2 \, {\left (x^{4} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right ) + 4 \, x^{3} \log \relax (2) \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right ) + 4 \, x^{2} \log \relax (2)^{2} \log \left (\log \relax (2) + \log \left (\log \relax (2)\right )\right )\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.33, size = 30, normalized size = 1.58 \begin {gather*} {\ln \left (\ln \left (\ln \relax (4)\right )\,\ln \relax (x)\right )}^2\,\left (x^4+4\,\ln \relax (2)\,x^3+4\,{\ln \relax (2)}^2\,x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 34, normalized size = 1.79 \begin {gather*} \left (x^{4} + 4 x^{3} \log {\relax (2 )} + 4 x^{2} \log {\relax (2 )}^{2}\right ) \log {\left (\log {\relax (x )} \log {\left (2 \log {\relax (2 )} \right )} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________