Optimal. Leaf size=25 \[ -\frac {e}{2+\log (5)+\frac {9 e^x (3+\log (5))}{x}}+\log (\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.88, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 10, number of rules used = 6, integrand size = 166, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6, 6688, 6711, 32, 2302, 29} \begin {gather*} \log (\log (x))+\frac {9 e (3+\log (5))}{(2+\log (5)) \left (e^{-x} x (2+\log (5))+9 (3+\log (5))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 29
Rule 32
Rule 2302
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^2+4 x^2 \log (5)+x^2 \log ^2(5)+e^{2 x} \left (729+486 \log (5)+81 \log ^2(5)\right )+e^x \left (108 x+90 x \log (5)+18 x \log ^2(5)\right )+e^x \left (e \left (-27 x+27 x^2\right )+e \left (-9 x+9 x^2\right ) \log (5)\right ) \log (x)}{\left (x^3 \log ^2(5)+x^3 (4+4 \log (5))+e^{2 x} \left (729 x+486 x \log (5)+81 x \log ^2(5)\right )+e^x \left (108 x^2+90 x^2 \log (5)+18 x^2 \log ^2(5)\right )\right ) \log (x)} \, dx\\ &=\int \frac {4 x^2+4 x^2 \log (5)+x^2 \log ^2(5)+e^{2 x} \left (729+486 \log (5)+81 \log ^2(5)\right )+e^x \left (108 x+90 x \log (5)+18 x \log ^2(5)\right )+e^x \left (e \left (-27 x+27 x^2\right )+e \left (-9 x+9 x^2\right ) \log (5)\right ) \log (x)}{\left (x^3 \left (4+4 \log (5)+\log ^2(5)\right )+e^{2 x} \left (729 x+486 x \log (5)+81 x \log ^2(5)\right )+e^x \left (108 x^2+90 x^2 \log (5)+18 x^2 \log ^2(5)\right )\right ) \log (x)} \, dx\\ &=\int \frac {x^2 \log ^2(5)+x^2 (4+4 \log (5))+e^{2 x} \left (729+486 \log (5)+81 \log ^2(5)\right )+e^x \left (108 x+90 x \log (5)+18 x \log ^2(5)\right )+e^x \left (e \left (-27 x+27 x^2\right )+e \left (-9 x+9 x^2\right ) \log (5)\right ) \log (x)}{\left (x^3 \left (4+4 \log (5)+\log ^2(5)\right )+e^{2 x} \left (729 x+486 x \log (5)+81 x \log ^2(5)\right )+e^x \left (108 x^2+90 x^2 \log (5)+18 x^2 \log ^2(5)\right )\right ) \log (x)} \, dx\\ &=\int \frac {x^2 \left (4+4 \log (5)+\log ^2(5)\right )+e^{2 x} \left (729+486 \log (5)+81 \log ^2(5)\right )+e^x \left (108 x+90 x \log (5)+18 x \log ^2(5)\right )+e^x \left (e \left (-27 x+27 x^2\right )+e \left (-9 x+9 x^2\right ) \log (5)\right ) \log (x)}{\left (x^3 \left (4+4 \log (5)+\log ^2(5)\right )+e^{2 x} \left (729 x+486 x \log (5)+81 x \log ^2(5)\right )+e^x \left (108 x^2+90 x^2 \log (5)+18 x^2 \log ^2(5)\right )\right ) \log (x)} \, dx\\ &=\int \left (\frac {9 e^{1+x} (-1+x) (3+\log (5))}{\left (x (2+\log (5))+9 e^x (3+\log (5))\right )^2}+\frac {1}{x \log (x)}\right ) \, dx\\ &=(9 (3+\log (5))) \int \frac {e^{1+x} (-1+x)}{\left (x (2+\log (5))+9 e^x (3+\log (5))\right )^2} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=-\left ((9 e (3+\log (5))) \operatorname {Subst}\left (\int \frac {1}{(x (2+\log (5))+9 (3+\log (5)))^2} \, dx,x,e^{-x} x\right )\right )+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\frac {9 e (3+\log (5))}{(2+\log (5)) \left (e^{-x} x (2+\log (5))+9 (3+\log (5))\right )}+\log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 30, normalized size = 1.20 \begin {gather*} -\frac {e x}{27 e^x+2 x+9 e^x \log (5)+x \log (5)}+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.14, size = 46, normalized size = 1.84 \begin {gather*} -\frac {x e - {\left (9 \, {\left (\log \relax (5) + 3\right )} e^{x} + x \log \relax (5) + 2 \, x\right )} \log \left (\log \relax (x)\right )}{9 \, {\left (\log \relax (5) + 3\right )} e^{x} + x \log \relax (5) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 56, normalized size = 2.24 \begin {gather*} \frac {x \log \relax (5) \log \left (\log \relax (x)\right ) + 9 \, e^{x} \log \relax (5) \log \left (\log \relax (x)\right ) - x e + 2 \, x \log \left (\log \relax (x)\right ) + 27 \, e^{x} \log \left (\log \relax (x)\right )}{x \log \relax (5) + 9 \, e^{x} \log \relax (5) + 2 \, x + 27 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.20
method | result | size |
risch | \(-\frac {x \,{\mathrm e}}{9 \,{\mathrm e}^{x} \ln \relax (5)+x \ln \relax (5)+27 \,{\mathrm e}^{x}+2 x}+\ln \left (\ln \relax (x )\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 26, normalized size = 1.04 \begin {gather*} -\frac {x e}{x {\left (\log \relax (5) + 2\right )} + 9 \, {\left (\log \relax (5) + 3\right )} e^{x}} + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {x^2\,{\ln \relax (5)}^2+{\mathrm {e}}^x\,\left (108\,x+90\,x\,\ln \relax (5)+18\,x\,{\ln \relax (5)}^2\right )+4\,x^2\,\ln \relax (5)+4\,x^2+{\mathrm {e}}^{2\,x}\,\left (486\,\ln \relax (5)+81\,{\ln \relax (5)}^2+729\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (\mathrm {e}\,\left (27\,x-27\,x^2\right )+\mathrm {e}\,\ln \relax (5)\,\left (9\,x-9\,x^2\right )\right )}{\ln \relax (x)\,\left (x^3\,{\ln \relax (5)}^2+{\mathrm {e}}^x\,\left (18\,x^2\,{\ln \relax (5)}^2+90\,x^2\,\ln \relax (5)+108\,x^2\right )+4\,x^3\,\ln \relax (5)+{\mathrm {e}}^{2\,x}\,\left (729\,x+486\,x\,\ln \relax (5)+81\,x\,{\ln \relax (5)}^2\right )+4\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 27, normalized size = 1.08 \begin {gather*} - \frac {e x}{x \log {\relax (5 )} + 2 x + \left (9 \log {\relax (5 )} + 27\right ) e^{x}} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________