Optimal. Leaf size=33 \[ \left (\frac {e^{e^x}}{4}-\frac {x}{5}\right ) \left (2+e^x+\frac {3 \left (-x+x^2\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{20} \left (4+e^x (-4-4 x)-24 x+e^{e^x} \left (15+5 e^{2 x}+15 e^x x\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{20} \int \left (4+e^x (-4-4 x)-24 x+e^{e^x} \left (15+5 e^{2 x}+15 e^x x\right )\right ) \, dx\\ &=\frac {x}{5}-\frac {3 x^2}{5}+\frac {1}{20} \int e^x (-4-4 x) \, dx+\frac {1}{20} \int e^{e^x} \left (15+5 e^{2 x}+15 e^x x\right ) \, dx\\ &=\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {1}{20} \int 5 e^{e^x} \left (3+e^{2 x}+3 e^x x\right ) \, dx+\frac {\int e^x \, dx}{5}\\ &=\frac {e^x}{5}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {1}{4} \int e^{e^x} \left (3+e^{2 x}+3 e^x x\right ) \, dx\\ &=\frac {e^x}{5}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {1}{4} \int \left (3 e^{e^x}+e^{e^x+2 x}+3 e^{e^x+x} x\right ) \, dx\\ &=\frac {e^x}{5}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {1}{4} \int e^{e^x+2 x} \, dx+\frac {3}{4} \int e^{e^x} \, dx+\frac {3}{4} \int e^{e^x+x} x \, dx\\ &=\frac {e^x}{5}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {1}{4} \operatorname {Subst}\left (\int e^x x \, dx,x,e^x\right )+\frac {3}{4} \int e^{e^x+x} x \, dx+\frac {3}{4} \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )\\ &=\frac {e^x}{5}+\frac {e^{e^x+x}}{4}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {3 \text {Ei}\left (e^x\right )}{4}-\frac {1}{4} \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )+\frac {3}{4} \int e^{e^x+x} x \, dx\\ &=-\frac {e^{e^x}}{4}+\frac {e^x}{5}+\frac {e^{e^x+x}}{4}+\frac {x}{5}-\frac {3 x^2}{5}-\frac {1}{5} e^x (1+x)+\frac {3 \text {Ei}\left (e^x\right )}{4}+\frac {3}{4} \int e^{e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 34, normalized size = 1.03 \begin {gather*} \frac {1}{20} \left (4 x-4 e^x x-12 x^2+5 e^{e^x} \left (-1+e^x+3 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 0.79 \begin {gather*} -\frac {3}{5} \, x^{2} - \frac {1}{5} \, x e^{x} + \frac {1}{4} \, {\left (3 \, x + e^{x} - 1\right )} e^{\left (e^{x}\right )} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 47, normalized size = 1.42 \begin {gather*} -\frac {3}{5} \, x^{2} + \frac {1}{4} \, {\left (3 \, x e^{\left (2 \, x + e^{x}\right )} + e^{\left (3 \, x + e^{x}\right )} - e^{\left (2 \, x + e^{x}\right )}\right )} e^{\left (-2 \, x\right )} - \frac {1}{5} \, x e^{x} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 0.88
method | result | size |
risch | \(\frac {\left (15 x -5+5 \,{\mathrm e}^{x}\right ) {\mathrm e}^{{\mathrm e}^{x}}}{20}-\frac {{\mathrm e}^{x} x}{5}-\frac {3 x^{2}}{5}+\frac {x}{5}\) | \(29\) |
default | \(\frac {x}{5}-\frac {3 x^{2}}{5}-\frac {{\mathrm e}^{x} x}{5}+\frac {{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}}{4}+\frac {3 x \,{\mathrm e}^{{\mathrm e}^{x}}}{4}-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{4}\) | \(33\) |
norman | \(\frac {x}{5}-\frac {3 x^{2}}{5}-\frac {{\mathrm e}^{x} x}{5}+\frac {{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}}{4}+\frac {3 x \,{\mathrm e}^{{\mathrm e}^{x}}}{4}-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{4}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 26, normalized size = 0.79 \begin {gather*} -\frac {3}{5} \, x^{2} - \frac {1}{5} \, x e^{x} + \frac {1}{4} \, {\left (3 \, x + e^{x} - 1\right )} e^{\left (e^{x}\right )} + \frac {1}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.08, size = 18, normalized size = 0.55 \begin {gather*} -\frac {\left (4\,x-5\,{\mathrm {e}}^{{\mathrm {e}}^x}\right )\,\left (3\,x+{\mathrm {e}}^x-1\right )}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 31, normalized size = 0.94 \begin {gather*} - \frac {3 x^{2}}{5} - \frac {x e^{x}}{5} + \frac {x}{5} + \frac {\left (3 x + e^{x} - 1\right ) e^{e^{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________