Optimal. Leaf size=27 \[ 5-e^3+\frac {e^2}{4 x^2}+2 x+\left (5+e^x\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {12, 14, 2176, 2194} \begin {gather*} \frac {e^2}{4 x^2}+7 x-e^x+e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-e^2+14 x^3+e^x \left (2 x^3+2 x^4\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (2 e^x (1+x)+\frac {-e^2+14 x^3}{x^3}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-e^2+14 x^3}{x^3} \, dx+\int e^x (1+x) \, dx\\ &=e^x (1+x)+\frac {1}{2} \int \left (14-\frac {e^2}{x^3}\right ) \, dx-\int e^x \, dx\\ &=-e^x+\frac {e^2}{4 x^2}+7 x+e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.70 \begin {gather*} \frac {e^2}{4 x^2}+7 x+e^x x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 20, normalized size = 0.74 \begin {gather*} \frac {4 \, x^{3} e^{x} + 28 \, x^{3} + e^{2}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 20, normalized size = 0.74 \begin {gather*} \frac {4 \, x^{3} e^{x} + 28 \, x^{3} + e^{2}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.59
method | result | size |
default | \(7 x +\frac {{\mathrm e}^{2}}{4 x^{2}}+{\mathrm e}^{x} x\) | \(16\) |
risch | \(7 x +\frac {{\mathrm e}^{2}}{4 x^{2}}+{\mathrm e}^{x} x\) | \(16\) |
norman | \(\frac {{\mathrm e}^{x} x^{3}+7 x^{3}+\frac {{\mathrm e}^{2}}{4}}{x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 19, normalized size = 0.70 \begin {gather*} {\left (x - 1\right )} e^{x} + 7 \, x + \frac {e^{2}}{4 \, x^{2}} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 14, normalized size = 0.52 \begin {gather*} x\,\left ({\mathrm {e}}^x+7\right )+\frac {{\mathrm {e}}^2}{4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.56 \begin {gather*} x e^{x} + 7 x + \frac {e^{2}}{4 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________