Optimal. Leaf size=23 \[ 20 \log \left (x^2\right ) \log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-20+100 x-180 x^4+100 x^5\right ) \log \left (x^2\right )+\left (40+40 x^4\right ) \log \left (\frac {e^{5 x}}{x+2 x^5+x^9}\right )}{x+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-20+100 x-180 x^4+100 x^5\right ) \log \left (x^2\right )+\left (40+40 x^4\right ) \log \left (\frac {e^{5 x}}{x+2 x^5+x^9}\right )}{x \left (1+x^4\right )} \, dx\\ &=\int \left (\frac {20 (-1+x) \left (1-4 x-4 x^2-4 x^3+5 x^4\right ) \log \left (x^2\right )}{x \left (1+x^4\right )}+\frac {40 \log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x}\right ) \, dx\\ &=20 \int \frac {(-1+x) \left (1-4 x-4 x^2-4 x^3+5 x^4\right ) \log \left (x^2\right )}{x \left (1+x^4\right )} \, dx+40 \int \frac {\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x} \, dx\\ &=20 \int \left (5 \log \left (x^2\right )-\frac {\log \left (x^2\right )}{x}-\frac {8 x^3 \log \left (x^2\right )}{1+x^4}\right ) \, dx+40 \int \frac {\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x} \, dx\\ &=-\left (20 \int \frac {\log \left (x^2\right )}{x} \, dx\right )+40 \int \frac {\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x} \, dx+100 \int \log \left (x^2\right ) \, dx-160 \int \frac {x^3 \log \left (x^2\right )}{1+x^4} \, dx\\ &=-200 x+100 x \log \left (x^2\right )-5 \log ^2\left (x^2\right )-40 \log \left (x^2\right ) \log \left (1+x^4\right )+40 \int \frac {\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x} \, dx+80 \int \frac {\log \left (1+x^4\right )}{x} \, dx\\ &=-200 x+100 x \log \left (x^2\right )-5 \log ^2\left (x^2\right )-40 \log \left (x^2\right ) \log \left (1+x^4\right )-20 \text {Li}_2\left (-x^4\right )+40 \int \frac {\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.14, size = 63, normalized size = 2.74 \begin {gather*} 20 \left (\log \left (x^2\right ) \left (5 x+\log \left (\frac {1}{x \left (1+x^4\right )^2}\right )\right )-2 \log (x) \left (5 x+\log \left (\frac {1}{x \left (1+x^4\right )^2}\right )-\log \left (\frac {e^{5 x}}{x \left (1+x^4\right )^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 1.04 \begin {gather*} 20 \, \log \left (x^{2}\right ) \log \left (\frac {e^{\left (5 \, x\right )}}{x^{9} + 2 \, x^{5} + x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 27, normalized size = 1.17 \begin {gather*} 200 \, x \log \relax (x) - 40 \, \log \left (x^{8} + 2 \, x^{4} + 1\right ) \log \relax (x) - 40 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 15.83, size = 368, normalized size = 16.00
method | result | size |
default | \(40 \ln \relax (x ) \ln \left (\frac {{\mathrm e}^{5 x}}{x^{9}+2 x^{5}+x}\right )+40 \ln \relax (x )^{2}-200 x \ln \relax (x )+80 \ln \relax (x ) \ln \left (\frac {\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}-x}{\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}}\right )+80 \dilog \left (\frac {\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}-x}{\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}}\right )+80 \ln \relax (x ) \ln \left (\frac {-\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}-x}{-\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}}\right )+80 \dilog \left (\frac {-\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}-x}{-\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}}\right )+80 \ln \relax (x ) \ln \left (\frac {-\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}-x}{-\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}}\right )+80 \dilog \left (\frac {-\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}-x}{-\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}}\right )+80 \ln \relax (x ) \ln \left (\frac {\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}-x}{\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}}\right )+80 \dilog \left (\frac {\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}-x}{\frac {\sqrt {2}}{2}-\frac {i \sqrt {2}}{2}}\right )+100 x \ln \left (x^{2}\right )-20 \ln \relax (x ) \ln \left (x^{2}\right )+20 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{4}+1\right )}{\sum }\left (-2 \ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (x^{2}\right )+4 \dilog \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )+4 \ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )\right )\right )\) | \(368\) |
risch | \(\text {Expression too large to display}\) | \(2623\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 22, normalized size = 0.96 \begin {gather*} 200 \, x \log \relax (x) - 80 \, \log \left (x^{4} + 1\right ) \log \relax (x) - 40 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 23, normalized size = 1.00 \begin {gather*} 20\,\ln \left (x^2\right )\,\left (5\,x+\ln \left (\frac {1}{x^9+2\,x^5+x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 22, normalized size = 0.96 \begin {gather*} 20 \log {\left (x^{2} \right )} \log {\left (\frac {e^{5 x}}{x^{9} + 2 x^{5} + x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________