Optimal. Leaf size=24 \[ -e^{\frac {256}{81}+x+\frac {\log (2)}{-x^5+\log (x)}}+x \]
________________________________________________________________________________________
Rubi [B] time = 6.83, antiderivative size = 95, normalized size of antiderivative = 3.96, number of steps used = 4, number of rules used = 3, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {6741, 6742, 2288} \begin {gather*} x-\frac {2^{\frac {1}{\log (x)-x^5}} e^{\frac {x^5 (81 x+256)}{81 \left (x^5-\log (x)\right )}} x^{-\frac {81 x^5+81 x-81 \log (x)+256}{81 \left (x^5-\log (x)\right )}} \left (\log (2)-x^5 \log (32)\right )}{\left (\frac {1}{x}-5 x^4\right ) \log (2)} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
Rule 2288
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^{11}-2 x^6 \log (x)+x \log ^2(x)+\exp \left (\frac {-256 x^5-81 x^6+81 \log (2)+(256+81 x) \log (x)}{-81 x^5+81 \log (x)}\right ) \left (-x^{11}+\left (1-5 x^5\right ) \log (2)+2 x^6 \log (x)-x \log ^2(x)\right )}{x \left (x^5-\log (x)\right )^2} \, dx\\ &=\int \left (1+\frac {2^{\frac {1}{-x^5+\log (x)}} e^{\frac {x^5 (256+81 x)}{81 \left (x^5-\log (x)\right )}} x^{\frac {-256-81 x-81 x^5+81 \log (x)}{81 \left (x^5-\log (x)\right )}} \left (-x^{11}+\log (2)-x^5 \log (32)+2 x^6 \log (x)-x \log ^2(x)\right )}{\left (x^5-\log (x)\right )^2}\right ) \, dx\\ &=x+\int \frac {2^{\frac {1}{-x^5+\log (x)}} e^{\frac {x^5 (256+81 x)}{81 \left (x^5-\log (x)\right )}} x^{\frac {-256-81 x-81 x^5+81 \log (x)}{81 \left (x^5-\log (x)\right )}} \left (-x^{11}+\log (2)-x^5 \log (32)+2 x^6 \log (x)-x \log ^2(x)\right )}{\left (x^5-\log (x)\right )^2} \, dx\\ &=x-\frac {2^{\frac {1}{-x^5+\log (x)}} e^{\frac {x^5 (256+81 x)}{81 \left (x^5-\log (x)\right )}} x^{-\frac {256+81 x+81 x^5-81 \log (x)}{81 \left (x^5-\log (x)\right )}} \left (\log (2)-x^5 \log (32)\right )}{\left (\frac {1}{x}-5 x^4\right ) \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 23, normalized size = 0.96 \begin {gather*} -2^{\frac {1}{-x^5+\log (x)}} e^{\frac {256}{81}+x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 41, normalized size = 1.71 \begin {gather*} x - e^{\left (\frac {81 \, x^{6} + 256 \, x^{5} - {\left (81 \, x + 256\right )} \log \relax (x) - 81 \, \log \relax (2)}{81 \, {\left (x^{5} - \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.75, size = 41, normalized size = 1.71 \begin {gather*} x - e^{\left (\frac {81 \, x^{6} + 256 \, x^{5} - 81 \, x \log \relax (x) - 81 \, \log \relax (2) - 256 \, \log \relax (x)}{81 \, {\left (x^{5} - \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 42, normalized size = 1.75
method | result | size |
risch | \(x -{\mathrm e}^{\frac {-81 x^{6}-256 x^{5}+81 x \ln \relax (x )+256 \ln \relax (x )+81 \ln \relax (2)}{81 \ln \relax (x )-81 x^{5}}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 22, normalized size = 0.92 \begin {gather*} x - e^{\left (x - \frac {\log \relax (2)}{x^{5} - \log \relax (x)} + \frac {256}{81}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 89, normalized size = 3.71 \begin {gather*} x-2^{\frac {81}{81\,\ln \relax (x)-81\,x^5}}\,x^{\frac {256}{81\,\ln \relax (x)-81\,x^5}}\,x^{\frac {81\,x}{81\,\ln \relax (x)-81\,x^5}}\,{\mathrm {e}}^{-\frac {81\,x^6}{81\,\ln \relax (x)-81\,x^5}}\,{\mathrm {e}}^{-\frac {256\,x^5}{81\,\ln \relax (x)-81\,x^5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.51, size = 36, normalized size = 1.50 \begin {gather*} x - e^{\frac {- 81 x^{6} - 256 x^{5} + \left (81 x + 256\right ) \log {\relax (x )} + 81 \log {\relax (2 )}}{- 81 x^{5} + 81 \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________