Optimal. Leaf size=31 \[ e+\frac {1}{2} e^{\frac {x}{(2-x) (1+x)}+\frac {4+x}{2}} x \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-8-8 x+3 x^2+x^3+\left (4+2 x-2 x^2\right ) \log (2)}{-4-2 x+2 x^2}\right ) \left (8+16 x-2 x^2-5 x^3+x^5\right )}{8+8 x-6 x^2-4 x^3+2 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}} \left (8+16 x-2 x^2-5 x^3+x^5\right )}{4 \left (2+x-x^2\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}} \left (8+16 x-2 x^2-5 x^3+x^5\right )}{\left (2+x-x^2\right )^2} \, dx\\ &=\frac {1}{4} \int \left (2 e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}+\frac {8 e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{3 (-2+x)^2}+\frac {4 e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{3 (-2+x)}+e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}} x-\frac {2 e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{3 (1+x)^2}+\frac {2 e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{3 (1+x)}\right ) \, dx\\ &=-\left (\frac {1}{6} \int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{(1+x)^2} \, dx\right )+\frac {1}{6} \int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{1+x} \, dx+\frac {1}{4} \int e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}} x \, dx+\frac {1}{3} \int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{-2+x} \, dx+\frac {1}{2} \int e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}} \, dx+\frac {2}{3} \int \frac {e^{\frac {8+8 x-3 x^2-x^3}{4+2 x-2 x^2}}}{(-2+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 27, normalized size = 0.87 \begin {gather*} \frac {1}{2} e^{2+\frac {x}{2}-\frac {x}{-2-x+x^2}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 40, normalized size = 1.29 \begin {gather*} x e^{\left (\frac {x^{3} + 3 \, x^{2} - 2 \, {\left (x^{2} - x - 2\right )} \log \relax (2) - 8 \, x - 8}{2 \, {\left (x^{2} - x - 2\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 30, normalized size = 0.97 \begin {gather*} \frac {1}{2} \, x e^{\left (\frac {x^{3} - x^{2} - 4 \, x}{2 \, {\left (x^{2} - x - 2\right )}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 47, normalized size = 1.52
method | result | size |
gosper | \({\mathrm e}^{-\frac {2 x^{2} \ln \relax (2)-x^{3}-2 x \ln \relax (2)-3 x^{2}-4 \ln \relax (2)+8 x +8}{2 \left (x^{2}-x -2\right )}} x\) | \(47\) |
risch | \(x \,{\mathrm e}^{-\frac {2 x^{2} \ln \relax (2)-x^{3}-2 x \ln \relax (2)-3 x^{2}-4 \ln \relax (2)+8 x +8}{2 \left (x +1\right ) \left (x -2\right )}}\) | \(47\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {\left (-2 x^{2}+2 x +4\right ) \ln \relax (2)+x^{3}+3 x^{2}-8 x -8}{2 x^{2}-2 x -4}}-2 x \,{\mathrm e}^{\frac {\left (-2 x^{2}+2 x +4\right ) \ln \relax (2)+x^{3}+3 x^{2}-8 x -8}{2 x^{2}-2 x -4}}-x^{2} {\mathrm e}^{\frac {\left (-2 x^{2}+2 x +4\right ) \ln \relax (2)+x^{3}+3 x^{2}-8 x -8}{2 x^{2}-2 x -4}}}{x^{2}-x -2}\) | \(145\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.16, size = 23, normalized size = 0.74 \begin {gather*} \frac {1}{2} \, x e^{\left (\frac {1}{2} \, x - \frac {1}{3 \, {\left (x + 1\right )}} - \frac {2}{3 \, {\left (x - 2\right )}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.76, size = 103, normalized size = 3.32 \begin {gather*} 2^{\frac {x^2-2}{-x^2+x+2}-\frac {2\,x}{-2\,x^2+2\,x+4}}\,x\,{\mathrm {e}}^{\frac {8\,x}{-2\,x^2+2\,x+4}}\,{\mathrm {e}}^{-\frac {x^3}{-2\,x^2+2\,x+4}}\,{\mathrm {e}}^{-\frac {3\,x^2}{-2\,x^2+2\,x+4}}\,{\mathrm {e}}^{\frac {8}{-2\,x^2+2\,x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 39, normalized size = 1.26 \begin {gather*} x e^{\frac {x^{3} + 3 x^{2} - 8 x + \left (- 2 x^{2} + 2 x + 4\right ) \log {\relax (2 )} - 8}{2 x^{2} - 2 x - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________