Optimal. Leaf size=25 \[ -4 x+\frac {4 x}{\log \left (\frac {2 (3-x)}{x+\log \left (x^2\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-24-4 x-4 x \log \left (x^2\right )+\left (-12 x+4 x^2+(-12+4 x) \log \left (x^2\right )\right ) \log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )+\left (12 x-4 x^2+(12-4 x) \log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}{\left (-3 x+x^2+(-3+x) \log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24+4 x+4 x \log \left (x^2\right )-\left (-12 x+4 x^2+(-12+4 x) \log \left (x^2\right )\right ) \log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )-\left (12 x-4 x^2+(12-4 x) \log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}{(3-x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=\int \frac {4 \left (6+x+x \log \left (x^2\right )-(-3+x) \left (x+\log \left (x^2\right )\right ) \log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )+(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )\right )}{(3-x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=4 \int \frac {6+x+x \log \left (x^2\right )-(-3+x) \left (x+\log \left (x^2\right )\right ) \log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )+(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}{(3-x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=4 \int \left (-1+\frac {-6-x-x \log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}+\frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}\right ) \, dx\\ &=-4 x+4 \int \frac {-6-x-x \log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx+4 \int \frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=-4 x+4 \int \left (-\frac {6}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}-\frac {x}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}-\frac {x \log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}\right ) \, dx+4 \int \frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=-4 x-4 \int \frac {x}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-4 \int \frac {x \log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx+4 \int \frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-24 \int \frac {1}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=-4 x-4 \int \left (\frac {1}{\left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}+\frac {3}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}\right ) \, dx-4 \int \left (\frac {\log \left (x^2\right )}{\left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}+\frac {3 \log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}\right ) \, dx+4 \int \frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-24 \int \frac {1}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ &=-4 x-4 \int \frac {1}{\left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-4 \int \frac {\log \left (x^2\right )}{\left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx+4 \int \frac {1}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-12 \int \frac {1}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-12 \int \frac {\log \left (x^2\right )}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx-24 \int \frac {1}{(-3+x) \left (x+\log \left (x^2\right )\right ) \log ^2\left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 24, normalized size = 0.96 \begin {gather*} -4 \left (x-\frac {x}{\log \left (\frac {6-2 x}{x+\log \left (x^2\right )}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 38, normalized size = 1.52 \begin {gather*} -\frac {4 \, {\left (x \log \left (-\frac {2 \, {\left (x - 3\right )}}{x + \log \left (x^{2}\right )}\right ) - x\right )}}{\log \left (-\frac {2 \, {\left (x - 3\right )}}{x + \log \left (x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.42, size = 25, normalized size = 1.00 \begin {gather*} -4 \, x - \frac {4 \, x}{\log \left (x + \log \left (x^{2}\right )\right ) - \log \left (-2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-4 x +12\right ) \ln \left (x^{2}\right )-4 x^{2}+12 x \right ) \ln \left (\frac {6-2 x}{\ln \left (x^{2}\right )+x}\right )^{2}+\left (\left (4 x -12\right ) \ln \left (x^{2}\right )+4 x^{2}-12 x \right ) \ln \left (\frac {6-2 x}{\ln \left (x^{2}\right )+x}\right )-4 x \ln \left (x^{2}\right )-4 x -24}{\left (\left (x -3\right ) \ln \left (x^{2}\right )+x^{2}-3 x \right ) \ln \left (\frac {6-2 x}{\ln \left (x^{2}\right )+x}\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.80, size = 53, normalized size = 2.12 \begin {gather*} -\frac {4 \, {\left ({\left (-i \, \pi - \log \relax (2) + 1\right )} x + x \log \left (x + 2 \, \log \relax (x)\right ) - x \log \left (x - 3\right )\right )}}{-i \, \pi - \log \relax (2) + \log \left (x + 2 \, \log \relax (x)\right ) - \log \left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.06, size = 25, normalized size = 1.00 \begin {gather*} \frac {4\,x}{\ln \left (-\frac {2\,x-6}{x+\ln \left (x^2\right )}\right )}-4\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 19, normalized size = 0.76 \begin {gather*} - 4 x + \frac {4 x}{\log {\left (\frac {6 - 2 x}{x + \log {\left (x^{2} \right )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________