Optimal. Leaf size=33 \[ \log \left (\frac {e^x}{5 \left (5+e^x+\frac {2}{(3-x) x^2}-x\right ) x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+2 x-47 x^2+93 x^3-56 x^4+13 x^5-x^6+e^x \left (-9 x^2+6 x^3-x^4\right )}{6 x-2 x^2+45 x^3-39 x^4+11 x^5-x^6+e^x \left (9 x^3-6 x^4+x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+2 x-47 x^2+93 x^3-56 x^4+13 x^5-x^6+e^x \left (-9 x^2+6 x^3-x^4\right )}{(3-x) x \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {-12+2 x^2-54 x^3+45 x^4-12 x^5+x^6}{(-3+x) x \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )}\right ) \, dx\\ &=-\log (x)+\int \frac {-12+2 x^2-54 x^3+45 x^4-12 x^5+x^6}{(-3+x) x \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )} \, dx\\ &=-\log (x)+\int \left (\frac {2}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4}+\frac {2}{(-3+x) \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )}+\frac {4}{x \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )}+\frac {18 x^2}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4}-\frac {9 x^3}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4}+\frac {x^4}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4}\right ) \, dx\\ &=-\log (x)+2 \int \frac {1}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4} \, dx+2 \int \frac {1}{(-3+x) \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )} \, dx+4 \int \frac {1}{x \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right )} \, dx-9 \int \frac {x^3}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4} \, dx+18 \int \frac {x^2}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4} \, dx+\int \frac {x^4}{2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 44, normalized size = 1.33 \begin {gather*} x+\log (3-x)+\log (x)-\log \left (2+15 x^2+3 e^x x^2-8 x^3-e^x x^3+x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 50, normalized size = 1.52 \begin {gather*} x - \log \relax (x) - \log \left (-\frac {x^{4} - 8 \, x^{3} + 15 \, x^{2} - {\left (x^{3} - 3 \, x^{2}\right )} e^{x} + 2}{x^{3} - 3 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 41, normalized size = 1.24 \begin {gather*} x - \log \left (-x^{4} + x^{3} e^{x} + 8 \, x^{3} - 3 \, x^{2} e^{x} - 15 \, x^{2} - 2\right ) + \log \left (x - 3\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 38, normalized size = 1.15
method | result | size |
risch | \(-\ln \relax (x )+x -\ln \left ({\mathrm e}^{x}-\frac {x^{4}-8 x^{3}+15 x^{2}+2}{x^{2} \left (x -3\right )}\right )\) | \(38\) |
norman | \(x -\ln \left (x^{4}-{\mathrm e}^{x} x^{3}-8 x^{3}+3 \,{\mathrm e}^{x} x^{2}+15 x^{2}+2\right )+\ln \relax (x )+\ln \left (x -3\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 50, normalized size = 1.52 \begin {gather*} x - \log \relax (x) - \log \left (-\frac {x^{4} - 8 \, x^{3} + 15 \, x^{2} - {\left (x^{3} - 3 \, x^{2}\right )} e^{x} + 2}{x^{3} - 3 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.18, size = 40, normalized size = 1.21 \begin {gather*} x-\ln \left (3\,x^2\,{\mathrm {e}}^x-x^3\,{\mathrm {e}}^x+15\,x^2-8\,x^3+x^4+2\right )+\ln \left (x-3\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 32, normalized size = 0.97 \begin {gather*} x - \log {\relax (x )} - \log {\left (e^{x} + \frac {- x^{4} + 8 x^{3} - 15 x^{2} - 2}{x^{3} - 3 x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________