Optimal. Leaf size=22 \[ x+\frac {4 e^3 x}{3+e^e-x+\log \left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9+4 e^3+e^{2 e}+e^e \left (6+4 e^3-2 x\right )-6 x+x^2+\left (6+4 e^3+2 e^e-2 x\right ) \log \left (x^2\right )+\log ^2\left (x^2\right )}{9+e^{2 e}+e^e (6-2 x)-6 x+x^2+\left (6+2 e^e-2 x\right ) \log \left (x^2\right )+\log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \left (1+\frac {1}{9} \left (4 e^3+e^{2 e}\right )\right )+e^e \left (6+4 e^3-2 x\right )-6 x+x^2+\left (6+4 e^3+2 e^e-2 x\right ) \log \left (x^2\right )+\log ^2\left (x^2\right )}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (1+\frac {4 e^3 (-2+x)}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2}+\frac {4 e^3}{3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )}\right ) \, dx\\ &=x+\left (4 e^3\right ) \int \frac {-2+x}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2} \, dx+\left (4 e^3\right ) \int \frac {1}{3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )} \, dx\\ &=x+\left (4 e^3\right ) \int \frac {1}{3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )} \, dx+\left (4 e^3\right ) \int \left (-\frac {2}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2}+\frac {x}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=x+\left (4 e^3\right ) \int \frac {x}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2} \, dx+\left (4 e^3\right ) \int \frac {1}{3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )} \, dx-\left (8 e^3\right ) \int \frac {1}{\left (3 \left (1+\frac {e^e}{3}\right )-x+\log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 22, normalized size = 1.00 \begin {gather*} x+\frac {4 e^3 x}{3+e^e-x+\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 42, normalized size = 1.91 \begin {gather*} \frac {x^{2} - 4 \, x e^{3} - x e^{e} - x \log \left (x^{2}\right ) - 3 \, x}{x - e^{e} - \log \left (x^{2}\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 42, normalized size = 1.91 \begin {gather*} \frac {x^{2} - 4 \, x e^{3} - x e^{e} - x \log \left (x^{2}\right ) - 3 \, x}{x - e^{e} - \log \left (x^{2}\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 1.00
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{3} x}{3-x +\ln \left (x^{2}\right )+{\mathrm e}^{{\mathrm e}}}+x\) | \(22\) |
norman | \(\frac {x \ln \left (x^{2}\right )+\left (3+{\mathrm e}^{{\mathrm e}}+4 \,{\mathrm e}^{3}\right ) \ln \left (x^{2}\right )-x^{2}+\left ({\mathrm e}^{{\mathrm e}}+3\right ) \left (3+{\mathrm e}^{{\mathrm e}}+4 \,{\mathrm e}^{3}\right )}{3-x +\ln \left (x^{2}\right )+{\mathrm e}^{{\mathrm e}}}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.64 \begin {gather*} \frac {x^{2} - x {\left (4 \, e^{3} + e^{e} + 3\right )} - 2 \, x \log \relax (x)}{x - e^{e} - 2 \, \log \relax (x) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.60, size = 75, normalized size = 3.41 \begin {gather*} x+\frac {x\,\left ({\mathrm {e}}^{2\,\mathrm {e}}-3\,x+4\,{\mathrm {e}}^{\mathrm {e}+3}+12\,{\mathrm {e}}^3+6\,{\mathrm {e}}^{\mathrm {e}}-x\,{\mathrm {e}}^{\mathrm {e}}+9\right )-x\,\left ({\mathrm {e}}^{\mathrm {e}}+3\right )\,\left ({\mathrm {e}}^{\mathrm {e}}-x+3\right )}{\left ({\mathrm {e}}^{\mathrm {e}}+3\right )\,\left (\ln \left (x^2\right )-x+{\mathrm {e}}^{\mathrm {e}}+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.91 \begin {gather*} x + \frac {4 x e^{3}}{- x + \log {\left (x^{2} \right )} + 3 + e^{e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________