Optimal. Leaf size=20 \[ \frac {2}{\log \left (\frac {\frac {6}{5}-e^{16}}{x}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 24, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 3, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {6, 1593, 6686} \begin {gather*} \frac {2}{\log \left (\frac {5 x^2-5 e^{16}+6}{5 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 1593
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12+10 e^{16}+10 x^2}{\left (\left (-6+5 e^{16}\right ) x-5 x^3\right ) \log ^2\left (\frac {6-5 e^{16}+5 x^2}{5 x}\right )} \, dx\\ &=\int \frac {-12+10 e^{16}+10 x^2}{x \left (-6+5 e^{16}-5 x^2\right ) \log ^2\left (\frac {6-5 e^{16}+5 x^2}{5 x}\right )} \, dx\\ &=\frac {2}{\log \left (\frac {6-5 e^{16}+5 x^2}{5 x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 1.00 \begin {gather*} \frac {2}{\log \left (\frac {\frac {6}{5}-e^{16}}{x}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 21, normalized size = 1.05 \begin {gather*} \frac {2}{\log \left (\frac {5 \, x^{2} - 5 \, e^{16} + 6}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 21, normalized size = 1.05 \begin {gather*} \frac {2}{\log \left (\frac {5 \, x^{2} - 5 \, e^{16} + 6}{5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 22, normalized size = 1.10
method | result | size |
norman | \(\frac {2}{\ln \left (\frac {-5 \,{\mathrm e}^{16}+5 x^{2}+6}{5 x}\right )}\) | \(22\) |
risch | \(\frac {2}{\ln \left (\frac {-5 \,{\mathrm e}^{16}+5 x^{2}+6}{5 x}\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 23, normalized size = 1.15 \begin {gather*} -\frac {2}{\log \relax (5) - \log \left (5 \, x^{2} - 5 \, e^{16} + 6\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 18, normalized size = 0.90 \begin {gather*} \frac {2}{\ln \left (\frac {x^2-{\mathrm {e}}^{16}+\frac {6}{5}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.70 \begin {gather*} \frac {2}{\log {\left (\frac {x^{2} - e^{16} + \frac {6}{5}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________