Optimal. Leaf size=28 \[ \frac {x}{e^{2 e^4}-\frac {\log (36)}{x-5 e^{e^4} x}} \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 58, normalized size of antiderivative = 2.07, number of steps used = 10, number of rules used = 3, integrand size = 118, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6, 27, 683} \begin {gather*} e^{-2 e^4} x+\frac {e^{-4 e^4} \log ^2(36)}{\left (1-5 e^{e^4}\right ) \left (e^{2 e^4} \left (1-5 e^{e^4}\right ) x-\log (36)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 683
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^{4 e^4} x^2+\left (e^{2 e^4}-10 e^{3 e^4}\right ) x^2-2 x \log (36)+10 e^{e^4} x \log (36)}{e^{4 e^4} x^2-10 e^{5 e^4} x^2+25 e^{6 e^4} x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2-2 x \log (36)+10 e^{e^4} x \log (36)}{e^{4 e^4} x^2-10 e^{5 e^4} x^2+25 e^{6 e^4} x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{e^{4 e^4} x^2-10 e^{5 e^4} x^2+25 e^{6 e^4} x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{25 e^{6 e^4} x^2+\left (e^{4 e^4}-10 e^{5 e^4}\right ) x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{\left (e^{4 e^4}-10 e^{5 e^4}+25 e^{6 e^4}\right ) x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{\left (e^{4 e^4}-10 e^{5 e^4}+25 e^{6 e^4}\right ) x^2+\left (-2 e^{2 e^4}+10 e^{3 e^4}\right ) x \log (36)+\log ^2(36)} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{\left (-e^{2 e^4} x+5 e^{3 e^4} x+\log (36)\right )^2} \, dx\\ &=\int \frac {\left (e^{2 e^4}-10 e^{3 e^4}+25 e^{4 e^4}\right ) x^2+\left (-2+10 e^{e^4}\right ) x \log (36)}{\left (\left (-e^{2 e^4}+5 e^{3 e^4}\right ) x+\log (36)\right )^2} \, dx\\ &=\int \left (e^{-2 e^4}-\frac {e^{-2 e^4} \log ^2(36)}{\left (e^{2 e^4} \left (1-5 e^{e^4}\right ) x-\log (36)\right )^2}\right ) \, dx\\ &=e^{-2 e^4} x+\frac {e^{-4 e^4} \log ^2(36)}{\left (1-5 e^{e^4}\right ) \left (e^{2 e^4} \left (1-5 e^{e^4}\right ) x-\log (36)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 118, normalized size = 4.21 \begin {gather*} \frac {e^{-4 e^4} \left (-1+5 e^{e^4}\right ) \left (e^{4 e^4} x^2-10 e^{5 e^4} x^2+25 e^{6 e^4} x^2-2 e^{2 e^4} x \log (36)+10 e^{3 e^4} x \log (36)+\log (36) \log (1296)\right )}{\left (1-5 e^{e^4}\right )^2 \left (-e^{2 e^4} x+5 e^{3 e^4} x+\log (36)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 101, normalized size = 3.61 \begin {gather*} \frac {25 \, x^{2} e^{\left (6 \, e^{4}\right )} - 10 \, x^{2} e^{\left (5 \, e^{4}\right )} + x^{2} e^{\left (4 \, e^{4}\right )} + 10 \, x e^{\left (3 \, e^{4}\right )} \log \relax (6) - 2 \, x e^{\left (2 \, e^{4}\right )} \log \relax (6) + 4 \, \log \relax (6)^{2}}{25 \, x e^{\left (8 \, e^{4}\right )} - 10 \, x e^{\left (7 \, e^{4}\right )} + x e^{\left (6 \, e^{4}\right )} + 10 \, e^{\left (5 \, e^{4}\right )} \log \relax (6) - 2 \, e^{\left (4 \, e^{4}\right )} \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 35, normalized size = 1.25
method | result | size |
gosper | \(\frac {x^{2} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{5 x \,{\mathrm e}^{3 \,{\mathrm e}^{4}}-x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}+2 \ln \relax (6)}\) | \(35\) |
norman | \(\frac {x^{2} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{5 x \,{\mathrm e}^{3 \,{\mathrm e}^{4}}-x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}+2 \ln \relax (6)}\) | \(35\) |
risch | \(x \,{\mathrm e}^{-2 \,{\mathrm e}^{4}}+\frac {2 \,{\mathrm e}^{-4 \,{\mathrm e}^{4}} \ln \relax (3)^{2}}{\left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) \left (\frac {5 x \,{\mathrm e}^{3 \,{\mathrm e}^{4}}}{2}-\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}}{2}+\ln \relax (3)+\ln \relax (2)\right )}+\frac {4 \,{\mathrm e}^{-4 \,{\mathrm e}^{4}} \ln \relax (2) \ln \relax (3)}{\left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) \left (\frac {5 x \,{\mathrm e}^{3 \,{\mathrm e}^{4}}}{2}-\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}}{2}+\ln \relax (3)+\ln \relax (2)\right )}+\frac {2 \,{\mathrm e}^{-4 \,{\mathrm e}^{4}} \ln \relax (2)^{2}}{\left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) \left (\frac {5 x \,{\mathrm e}^{3 \,{\mathrm e}^{4}}}{2}-\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}}}{2}+\ln \relax (3)+\ln \relax (2)\right )}\) | \(138\) |
meijerg | \(\frac {2 \left (25 \,{\mathrm e}^{4 \,{\mathrm e}^{4}}-10 \,{\mathrm e}^{3 \,{\mathrm e}^{4}}+{\mathrm e}^{2 \,{\mathrm e}^{4}}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{4}} \ln \relax (6) \left (\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right ) \left (\frac {3 x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6)}+6\right )}{6 \ln \relax (6) \left (1+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6)}\right )}-2 \ln \left (1+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6)}\right )\right )}{\left (25 \,{\mathrm e}^{6 \,{\mathrm e}^{4}}-10 \,{\mathrm e}^{5 \,{\mathrm e}^{4}}+{\mathrm e}^{4 \,{\mathrm e}^{4}}\right ) \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}+\frac {\left (20 \ln \relax (6) {\mathrm e}^{{\mathrm e}^{4}}-4 \ln \relax (6)\right ) \left (-\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6) \left (1+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6)}\right )}+\ln \left (1+\frac {x \,{\mathrm e}^{2 \,{\mathrm e}^{4}} \left (5 \,{\mathrm e}^{{\mathrm e}^{4}}-1\right )}{2 \ln \relax (6)}\right )\right )}{25 \,{\mathrm e}^{6 \,{\mathrm e}^{4}}-10 \,{\mathrm e}^{5 \,{\mathrm e}^{4}}+{\mathrm e}^{4 \,{\mathrm e}^{4}}}\) | \(250\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 58, normalized size = 2.07 \begin {gather*} x e^{\left (-2 \, e^{4}\right )} + \frac {4 \, \log \relax (6)^{2}}{x {\left (25 \, e^{\left (8 \, e^{4}\right )} - 10 \, e^{\left (7 \, e^{4}\right )} + e^{\left (6 \, e^{4}\right )}\right )} + 2 \, {\left (5 \, e^{\left (5 \, e^{4}\right )} - e^{\left (4 \, e^{4}\right )}\right )} \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 95, normalized size = 3.39 \begin {gather*} x\,{\mathrm {e}}^{-2\,{\mathrm {e}}^4}-\frac {\mathrm {atan}\left (\frac {\ln \relax (6)\,2{}\mathrm {i}-x\,{\mathrm {e}}^{2\,{\mathrm {e}}^4}\,1{}\mathrm {i}+x\,{\mathrm {e}}^{3\,{\mathrm {e}}^4}\,5{}\mathrm {i}}{\sqrt {2\,\ln \relax (6)+\ln \left (36\right )}\,\sqrt {2\,\ln \relax (6)-\ln \left (36\right )}}\right )\,{\mathrm {e}}^{-4\,{\mathrm {e}}^4}\,{\ln \relax (6)}^2\,4{}\mathrm {i}}{\left (5\,{\mathrm {e}}^{{\mathrm {e}}^4}-1\right )\,\sqrt {2\,\ln \relax (6)+\ln \left (36\right )}\,\sqrt {2\,\ln \relax (6)-\ln \left (36\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.48, size = 63, normalized size = 2.25 \begin {gather*} \frac {x}{e^{2 e^{4}}} + \frac {4 \log {\relax (6 )}^{2}}{x \left (- 10 e^{7 e^{4}} + e^{6 e^{4}} + 25 e^{8 e^{4}}\right ) - 2 e^{4 e^{4}} \log {\relax (6 )} + 10 e^{5 e^{4}} \log {\relax (6 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________