Optimal. Leaf size=34 \[ \frac {\left (1+x \left (\frac {5}{3-x}+x\right )\right ) \log (x)}{5-\frac {1}{4} x^2 (1+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 9.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {720+720 x+364 x^2-588 x^3-48 x^4-52 x^5+24 x^6+16 x^7-4 x^8+\left (1200 x+1512 x^2-732 x^3+368 x^4+60 x^5-40 x^6-40 x^7+8 x^8\right ) \log (x)}{3600 x-2400 x^2+40 x^3-480 x^4+89 x^5+190 x^6-9 x^7+4 x^8-9 x^9-2 x^{10}+x^{11}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {720+720 x+364 x^2-588 x^3-48 x^4-52 x^5+24 x^6+16 x^7-4 x^8+\left (1200 x+1512 x^2-732 x^3+368 x^4+60 x^5-40 x^6-40 x^7+8 x^8\right ) \log (x)}{x \left (60-20 x-3 x^2-5 x^3-x^4+x^5\right )^2} \, dx\\ &=\int \left (\frac {720}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}+\frac {720}{(-3+x)^2 x \left (-20+x^2+2 x^3+x^4\right )^2}+\frac {364 x}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}-\frac {588 x^2}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}-\frac {48 x^3}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}-\frac {52 x^4}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}+\frac {24 x^5}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}+\frac {16 x^6}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}-\frac {4 x^7}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}+\frac {4 \left (300+378 x-183 x^2+92 x^3+15 x^4-10 x^5-10 x^6+2 x^7\right ) \log (x)}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {x^7}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx\right )+4 \int \frac {\left (300+378 x-183 x^2+92 x^3+15 x^4-10 x^5-10 x^6+2 x^7\right ) \log (x)}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx+16 \int \frac {x^6}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx+24 \int \frac {x^5}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx-48 \int \frac {x^3}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx-52 \int \frac {x^4}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx+364 \int \frac {x}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx-588 \int \frac {x^2}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx+720 \int \frac {1}{(-3+x)^2 \left (-20+x^2+2 x^3+x^4\right )^2} \, dx+720 \int \frac {1}{(-3+x)^2 x \left (-20+x^2+2 x^3+x^4\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 42, normalized size = 1.24 \begin {gather*} -\frac {4 \left (-3-4 x-3 x^2+x^3\right ) \log (x)}{60-20 x-3 x^2-5 x^3-x^4+x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 42, normalized size = 1.24 \begin {gather*} -\frac {4 \, {\left (x^{3} - 3 \, x^{2} - 4 \, x - 3\right )} \log \relax (x)}{x^{5} - x^{4} - 5 \, x^{3} - 3 \, x^{2} - 20 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 42, normalized size = 1.24 \begin {gather*} -\frac {4 \, {\left (x^{3} - 3 \, x^{2} - 4 \, x - 3\right )} \log \relax (x)}{x^{5} - x^{4} - 5 \, x^{3} - 3 \, x^{2} - 20 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 43, normalized size = 1.26
method | result | size |
risch | \(-\frac {4 \left (x^{3}-3 x^{2}-4 x -3\right ) \ln \relax (x )}{x^{5}-x^{4}-5 x^{3}-3 x^{2}-20 x +60}\) | \(43\) |
norman | \(\frac {12 \ln \relax (x )-4 x^{3} \ln \relax (x )+12 x^{2} \ln \relax (x )+16 x \ln \relax (x )}{x^{5}-x^{4}-5 x^{3}-3 x^{2}-20 x +60}\) | \(51\) |
default | \(\frac {\ln \relax (x )}{5}+\frac {103 i \left (-1+8 \sqrt {5}\right ) \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{1240 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {7 i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}} \ln \left (2 \sqrt {5}+x^{2}+x \right )}{620 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {103 i \left (-1+8 \sqrt {5}\right ) \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{1240 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {453 i \sqrt {-1+8 \sqrt {5}}\, \ln \left (2 \sqrt {5}+x^{2}+x \right )}{620 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {7 i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}} \ln \left (2 \sqrt {5}+x^{2}+x \right )}{620 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {453 i \sqrt {-1+8 \sqrt {5}}\, \ln \left (2 \sqrt {5}+x^{2}+x \right )}{620 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {\ln \relax (x ) x \left (56 x^{3}+187 x^{2}+1051 x +1200\right )}{155 \left (x^{4}+2 x^{3}+x^{2}-20\right )}+\frac {2857 \ln \left (2 \sqrt {5}+x^{2}+x \right )}{2480 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {2857 \ln \left (2 \sqrt {5}+x^{2}+x \right )}{2480 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {2857 \ln \left (x +\frac {1}{2}+\frac {\sqrt {1+8 \sqrt {5}}}{2}\right )}{1240 \left (\frac {\sqrt {1+8 \sqrt {5}}}{4}-\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {2857 \ln \left (x +\frac {1}{2}-\frac {\sqrt {1+8 \sqrt {5}}}{2}\right )}{1240 \left (-\frac {\sqrt {1+8 \sqrt {5}}}{4}+\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {5 \ln \relax (x ) x}{31 \left (x -3\right )}-\frac {453 \ln \left (x +\frac {1}{2}+\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \sqrt {1+8 \sqrt {5}}}{310 \left (\frac {\sqrt {1+8 \sqrt {5}}}{4}-\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {103 \ln \left (x +\frac {1}{2}+\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \left (1+8 \sqrt {5}\right )}{1240 \left (\frac {\sqrt {1+8 \sqrt {5}}}{4}-\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {7 \ln \left (x +\frac {1}{2}+\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{310 \left (\frac {\sqrt {1+8 \sqrt {5}}}{4}-\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {453 \ln \left (x +\frac {1}{2}-\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \sqrt {1+8 \sqrt {5}}}{310 \left (-\frac {\sqrt {1+8 \sqrt {5}}}{4}+\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {103 \ln \left (x +\frac {1}{2}-\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \left (1+8 \sqrt {5}\right )}{1240 \left (-\frac {\sqrt {1+8 \sqrt {5}}}{4}+\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {7 \ln \left (x +\frac {1}{2}-\frac {\sqrt {1+8 \sqrt {5}}}{2}\right ) \left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{310 \left (-\frac {\sqrt {1+8 \sqrt {5}}}{4}+\frac {\left (1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}+\textit {\_Z}^{2}-20\right )}{\sum }\frac {\left (56 \textit {\_R}^{3}+187 \textit {\_R}^{2}+1051 \textit {\_R} +1200\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3}+3 \textit {\_R}^{2}+\textit {\_R}}\right )}{310}+\frac {7 \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}} \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{310 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {7 \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}} \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{310 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {453 \sqrt {-1+8 \sqrt {5}}\, \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{310 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {2857 i \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{1240 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {453 \sqrt {-1+8 \sqrt {5}}\, \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{310 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}+\frac {2857 i \arctan \left (\frac {2 x +1}{\sqrt {-1+8 \sqrt {5}}}\right )}{1240 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {103 \left (-1+8 \sqrt {5}\right ) \ln \left (2 \sqrt {5}+x^{2}+x \right )}{2480 \left (\frac {i \sqrt {-1+8 \sqrt {5}}}{4}+\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}-\frac {103 \left (-1+8 \sqrt {5}\right ) \ln \left (2 \sqrt {5}+x^{2}+x \right )}{2480 \left (-\frac {i \sqrt {-1+8 \sqrt {5}}}{4}-\frac {i \left (-1+8 \sqrt {5}\right )^{\frac {3}{2}}}{4}\right )}\) | \(1272\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 42, normalized size = 1.24 \begin {gather*} -\frac {4 \, {\left (x^{3} - 3 \, x^{2} - 4 \, x - 3\right )} \log \relax (x)}{x^{5} - x^{4} - 5 \, x^{3} - 3 \, x^{2} - 20 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 50, normalized size = 1.47 \begin {gather*} \frac {15\,\ln \relax (x)}{31\,\left (x-3\right )}-\frac {\ln \relax (x)\,\left (15\,x^3+199\,x^2+240\,x+224\right )}{31\,\left (x^4+2\,x^3+x^2-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 39, normalized size = 1.15 \begin {gather*} \frac {\left (- 4 x^{3} + 12 x^{2} + 16 x + 12\right ) \log {\relax (x )}}{x^{5} - x^{4} - 5 x^{3} - 3 x^{2} - 20 x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________