Optimal. Leaf size=15 \[ 2-\frac {1+3 x}{\log \left (x^3\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 18, normalized size of antiderivative = 1.20, number of steps used = 13, number of rules used = 9, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {6741, 12, 6742, 2353, 2297, 2300, 2178, 2302, 30} \begin {gather*} -\frac {3 x}{\log \left (x^3\right )}-\frac {1}{\log \left (x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2297
Rule 2300
Rule 2302
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (1+3 x-x \log \left (x^3\right )\right )}{x \log ^2\left (x^3\right )} \, dx\\ &=3 \int \frac {1+3 x-x \log \left (x^3\right )}{x \log ^2\left (x^3\right )} \, dx\\ &=3 \int \left (\frac {1+3 x}{x \log ^2\left (x^3\right )}-\frac {1}{\log \left (x^3\right )}\right ) \, dx\\ &=3 \int \frac {1+3 x}{x \log ^2\left (x^3\right )} \, dx-3 \int \frac {1}{\log \left (x^3\right )} \, dx\\ &=3 \int \left (\frac {3}{\log ^2\left (x^3\right )}+\frac {1}{x \log ^2\left (x^3\right )}\right ) \, dx-\frac {x \operatorname {Subst}\left (\int \frac {e^{x/3}}{x} \, dx,x,\log \left (x^3\right )\right )}{\sqrt [3]{x^3}}\\ &=-\frac {x \text {Ei}\left (\frac {\log \left (x^3\right )}{3}\right )}{\sqrt [3]{x^3}}+3 \int \frac {1}{x \log ^2\left (x^3\right )} \, dx+9 \int \frac {1}{\log ^2\left (x^3\right )} \, dx\\ &=-\frac {x \text {Ei}\left (\frac {\log \left (x^3\right )}{3}\right )}{\sqrt [3]{x^3}}-\frac {3 x}{\log \left (x^3\right )}+3 \int \frac {1}{\log \left (x^3\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (x^3\right )\right )\\ &=-\frac {x \text {Ei}\left (\frac {\log \left (x^3\right )}{3}\right )}{\sqrt [3]{x^3}}-\frac {1}{\log \left (x^3\right )}-\frac {3 x}{\log \left (x^3\right )}+\frac {x \operatorname {Subst}\left (\int \frac {e^{x/3}}{x} \, dx,x,\log \left (x^3\right )\right )}{\sqrt [3]{x^3}}\\ &=-\frac {1}{\log \left (x^3\right )}-\frac {3 x}{\log \left (x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.20 \begin {gather*} -\frac {1}{\log \left (x^3\right )}-\frac {3 x}{\log \left (x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 13, normalized size = 0.87 \begin {gather*} -\frac {3 \, x + 1}{\log \left (x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 13, normalized size = 0.87 \begin {gather*} -\frac {3 \, x + 1}{\log \left (x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.87
method | result | size |
norman | \(\frac {-3 x -1}{\ln \left (x^{3}\right )}\) | \(13\) |
risch | \(-\frac {3 x +1}{\ln \left (x^{3}\right )}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 11, normalized size = 0.73 \begin {gather*} -\frac {3 \, x + 1}{3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 13, normalized size = 0.87 \begin {gather*} -\frac {3\,x+1}{\ln \left (x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 10, normalized size = 0.67 \begin {gather*} \frac {- 3 x - 1}{\log {\left (x^{3} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________