Optimal. Leaf size=13 \[ \left (x+\log \left (-\frac {x}{5 e^5}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 32, normalized size of antiderivative = 2.46, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {14, 2346, 2301, 2295} \begin {gather*} (x+1)^2-2 x+\log ^2\left (-\frac {x}{5 e^5}\right )+2 x \log \left (-\frac {x}{5 e^5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 (1+x)+\frac {2 (1+x) \log \left (-\frac {x}{5 e^5}\right )}{x}\right ) \, dx\\ &=(1+x)^2+2 \int \frac {(1+x) \log \left (-\frac {x}{5 e^5}\right )}{x} \, dx\\ &=(1+x)^2+2 \int \log \left (-\frac {x}{5 e^5}\right ) \, dx+2 \int \frac {\log \left (-\frac {x}{5 e^5}\right )}{x} \, dx\\ &=-2 x+(1+x)^2+2 x \log \left (-\frac {x}{5 e^5}\right )+\log ^2\left (-\frac {x}{5 e^5}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.00, size = 28, normalized size = 2.15 \begin {gather*} -10 x+x^2+2 x \log \left (-\frac {x}{5}\right )+\log ^2\left (-\frac {x}{5}\right )-10 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 21, normalized size = 1.62 \begin {gather*} x^{2} + 2 \, x \log \left (-\frac {1}{5} \, x e^{\left (-5\right )}\right ) + \log \left (-\frac {1}{5} \, x e^{\left (-5\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 24, normalized size = 1.85 \begin {gather*} x^{2} + 2 \, x \log \left (-\frac {1}{5} \, x\right ) + \log \left (-\frac {1}{5} \, x\right )^{2} - 10 \, x - 10 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 1.69
method | result | size |
risch | \(x^{2}+\ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )^{2}+2 \ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right ) x\) | \(22\) |
norman | \(x^{2}+\ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )^{2}+2 \ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right ) x\) | \(26\) |
derivativedivides | \(x^{2}-10 \,{\mathrm e}^{5} \left (-\frac {x \,{\mathrm e}^{-5} \ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )}{5}+\frac {x \,{\mathrm e}^{-5}}{5}\right )+2 x +\ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )^{2}\) | \(45\) |
default | \(x^{2}-10 \,{\mathrm e}^{5} \left (-\frac {x \,{\mathrm e}^{-5} \ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )}{5}+\frac {x \,{\mathrm e}^{-5}}{5}\right )+2 x +\ln \left (-\frac {x \,{\mathrm e}^{-5}}{5}\right )^{2}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 35, normalized size = 2.69 \begin {gather*} x^{2} + 2 \, {\left (x e^{\left (-5\right )} \log \left (-\frac {1}{5} \, x e^{\left (-5\right )}\right ) - x e^{\left (-5\right )}\right )} e^{5} + \log \left (-\frac {1}{5} \, x e^{\left (-5\right )}\right )^{2} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.14, size = 14, normalized size = 1.08 \begin {gather*} \left (x+\ln \left (-\frac {x}{5}\right )\right )\,\left (x+\ln \left (-\frac {x}{5}\right )-10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.11, size = 27, normalized size = 2.08 \begin {gather*} x^{2} + 2 x \log {\left (- \frac {x}{5 e^{5}} \right )} + \log {\left (- \frac {x}{5 e^{5}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________