Optimal. Leaf size=24 \[ \frac {10 \left (4+\frac {3}{-\frac {x}{4}+\log (x)}\right )}{\log ^2(5) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {120 x-40 x^2+(-960+440 x) \log (x)-640 \log ^2(x)}{x^3 \log ^2(5) \log ^2(x)-8 x^2 \log ^2(5) \log ^3(x)+16 x \log ^2(5) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40 \left (-((-3+x) x)-(24-11 x) \log (x)-16 \log ^2(x)\right )}{x \log ^2(5) (x-4 \log (x))^2 \log ^2(x)} \, dx\\ &=\frac {40 \int \frac {-((-3+x) x)-(24-11 x) \log (x)-16 \log ^2(x)}{x (x-4 \log (x))^2 \log ^2(x)} \, dx}{\log ^2(5)}\\ &=\frac {40 \int \left (\frac {12 (-4+x)}{x^2 (x-4 \log (x))^2}+\frac {12}{x^2 (x-4 \log (x))}+\frac {3-x}{x^2 \log ^2(x)}+\frac {3}{x^2 \log (x)}\right ) \, dx}{\log ^2(5)}\\ &=\frac {40 \int \frac {3-x}{x^2 \log ^2(x)} \, dx}{\log ^2(5)}+\frac {120 \int \frac {1}{x^2 \log (x)} \, dx}{\log ^2(5)}+\frac {480 \int \frac {-4+x}{x^2 (x-4 \log (x))^2} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}\\ &=\frac {40 \int \left (\frac {3}{x^2 \log ^2(x)}-\frac {1}{x \log ^2(x)}\right ) \, dx}{\log ^2(5)}+\frac {120 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )}{\log ^2(5)}+\frac {480 \int \left (-\frac {4}{x^2 (x-4 \log (x))^2}+\frac {1}{x (x-4 \log (x))^2}\right ) \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}\\ &=\frac {120 \text {Ei}(-\log (x))}{\log ^2(5)}-\frac {40 \int \frac {1}{x \log ^2(x)} \, dx}{\log ^2(5)}+\frac {120 \int \frac {1}{x^2 \log ^2(x)} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x (x-4 \log (x))^2} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}-\frac {1920 \int \frac {1}{x^2 (x-4 \log (x))^2} \, dx}{\log ^2(5)}\\ &=\frac {120 \text {Ei}(-\log (x))}{\log ^2(5)}-\frac {120}{x \log ^2(5) \log (x)}-\frac {40 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )}{\log ^2(5)}-\frac {120 \int \frac {1}{x^2 \log (x)} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x (x-4 \log (x))^2} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}-\frac {1920 \int \frac {1}{x^2 (x-4 \log (x))^2} \, dx}{\log ^2(5)}\\ &=\frac {120 \text {Ei}(-\log (x))}{\log ^2(5)}+\frac {40}{\log ^2(5) \log (x)}-\frac {120}{x \log ^2(5) \log (x)}-\frac {120 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )}{\log ^2(5)}+\frac {480 \int \frac {1}{x (x-4 \log (x))^2} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}-\frac {1920 \int \frac {1}{x^2 (x-4 \log (x))^2} \, dx}{\log ^2(5)}\\ &=\frac {40}{\log ^2(5) \log (x)}-\frac {120}{x \log ^2(5) \log (x)}+\frac {480 \int \frac {1}{x (x-4 \log (x))^2} \, dx}{\log ^2(5)}+\frac {480 \int \frac {1}{x^2 (x-4 \log (x))} \, dx}{\log ^2(5)}-\frac {1920 \int \frac {1}{x^2 (x-4 \log (x))^2} \, dx}{\log ^2(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.17 \begin {gather*} -\frac {40 (3-x+4 \log (x))}{\log ^2(5) \left (x \log (x)-4 \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 30, normalized size = 1.25 \begin {gather*} \frac {40 \, {\left (x - 4 \, \log \relax (x) - 3\right )}}{x \log \relax (5)^{2} \log \relax (x) - 4 \, \log \relax (5)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 39, normalized size = 1.62 \begin {gather*} -\frac {480}{x^{2} \log \relax (5)^{2} - 4 \, x \log \relax (5)^{2} \log \relax (x)} + \frac {40 \, {\left (x - 3\right )}}{x \log \relax (5)^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.08
method | result | size |
risch | \(\frac {40 x -160 \ln \relax (x )-120}{\ln \relax (5)^{2} \ln \relax (x ) \left (x -4 \ln \relax (x )\right )}\) | \(26\) |
norman | \(\frac {-\frac {120}{\ln \relax (5)}+\frac {40 x}{\ln \relax (5)}-\frac {160 \ln \relax (x )}{\ln \relax (5)}}{\ln \relax (5) \ln \relax (x ) \left (x -4 \ln \relax (x )\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 30, normalized size = 1.25 \begin {gather*} \frac {40 \, {\left (x - 4 \, \log \relax (x) - 3\right )}}{x \log \relax (5)^{2} \log \relax (x) - 4 \, \log \relax (5)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 27, normalized size = 1.12 \begin {gather*} -\frac {40\,\left (4\,\ln \relax (x)-x+3\right )}{{\ln \relax (5)}^2\,\ln \relax (x)\,\left (x-4\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 31, normalized size = 1.29 \begin {gather*} \frac {- 40 x + 160 \log {\relax (x )} + 120}{- x \log {\relax (5 )}^{2} \log {\relax (x )} + 4 \log {\relax (5 )}^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________