Optimal. Leaf size=25 \[ -5+e^{\left (\frac {1}{3}+x\right )^{5-x}}+12 x \left (x+(3+x)^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {108+492 x+540 x^2+108 x^3+3^{-5+x} e^{3^{-5+x} (1+3 x)^{5-x}} (1+3 x)^{5-x} \left (15-3 x+(-1-3 x) \log \left (\frac {1}{3} (1+3 x)\right )\right )}{1+3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (12 \left (9+14 x+3 x^2\right )-3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \left (-15+3 x+\log \left (\frac {1}{3}+x\right )+3 x \log \left (\frac {1}{3}+x\right )\right )\right ) \, dx\\ &=12 \int \left (9+14 x+3 x^2\right ) \, dx-\int 3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \left (-15+3 x+\log \left (\frac {1}{3}+x\right )+3 x \log \left (\frac {1}{3}+x\right )\right ) \, dx\\ &=108 x+84 x^2+12 x^3-\int \left (-5 3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x}+3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} x (1+3 x)^{4-x}+3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \log \left (\frac {1}{3}+x\right )+3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} x (1+3 x)^{4-x} \log \left (\frac {1}{3}+x\right )\right ) \, dx\\ &=108 x+84 x^2+12 x^3+5 \int 3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \, dx-\int 3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} x (1+3 x)^{4-x} \, dx-\int 3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \log \left (\frac {1}{3}+x\right ) \, dx-\int 3^{-4+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} x (1+3 x)^{4-x} \log \left (\frac {1}{3}+x\right ) \, dx\\ &=108 x+84 x^2+12 x^3+5 \int e^{\left (\frac {1}{3}+x\right )^{5-x}} \left (\frac {1}{3}+x\right )^{4-x} \, dx-\log \left (\frac {1}{3}+x\right ) \int e^{\left (\frac {1}{3}+x\right )^{5-x}} x \left (\frac {1}{3}+x\right )^{4-x} \, dx-\log \left (\frac {1}{3}+x\right ) \int 3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \, dx-\int e^{\left (\frac {1}{3}+x\right )^{5-x}} x \left (\frac {1}{3}+x\right )^{4-x} \, dx+\int \frac {\int e^{\left (\frac {1}{3}+x\right )^{5-x}} x \left (\frac {1}{3}+x\right )^{4-x} \, dx}{\frac {1}{3}+x} \, dx+\int \frac {\int 3^{-5+x} e^{\left (\frac {1}{3}+x\right )^{5-x}} (1+3 x)^{4-x} \, dx}{\frac {1}{3}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.86, size = 25, normalized size = 1.00 \begin {gather*} e^{\left (\frac {1}{3}+x\right )^{5-x}}+12 x \left (9+7 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 24, normalized size = 0.96 \begin {gather*} 12 \, x^{3} + 84 \, x^{2} + 108 \, x + e^{\left ({\left (x + \frac {1}{3}\right )}^{-x + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 1.00
method | result | size |
risch | \(108 x +{\mathrm e}^{\left (x +\frac {1}{3}\right )^{5-x}}+84 x^{2}+12 x^{3}\) | \(25\) |
default | \(108 x +{\mathrm e}^{{\mathrm e}^{\left (5-x \right ) \ln \left (x +\frac {1}{3}\right )}}+84 x^{2}+12 x^{3}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 130, normalized size = 5.20 \begin {gather*} 12 \, x^{3} + 84 \, x^{2} + 108 \, x + e^{\left (x^{5} e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )} + \frac {5}{3} \, x^{4} e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )} + \frac {10}{9} \, x^{3} e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )} + \frac {10}{27} \, x^{2} e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )} + \frac {5}{81} \, x e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )} + \frac {1}{243} \, e^{\left (x \log \relax (3) - x \log \left (3 \, x + 1\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.46, size = 82, normalized size = 3.28 \begin {gather*} 108\,x+{\mathrm {e}}^{\frac {1}{243\,{\left (x+\frac {1}{3}\right )}^x}+\frac {10\,x^2}{27\,{\left (x+\frac {1}{3}\right )}^x}+\frac {10\,x^3}{9\,{\left (x+\frac {1}{3}\right )}^x}+\frac {5\,x^4}{3\,{\left (x+\frac {1}{3}\right )}^x}+\frac {x^5}{{\left (x+\frac {1}{3}\right )}^x}+\frac {5\,x}{81\,{\left (x+\frac {1}{3}\right )}^x}}+84\,x^2+12\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.03, size = 26, normalized size = 1.04 \begin {gather*} 12 x^{3} + 84 x^{2} + 108 x + e^{e^{\left (5 - x\right ) \log {\left (x + \frac {1}{3} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________