Optimal. Leaf size=27 \[ 3-e^{-\frac {x}{\frac {3}{x}+x-4 x^2}}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 5.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} \left (6 x^2+4 x^5+e^{-\frac {x^2}{-3-x^2+4 x^3}} \left (-9-6 x^2+24 x^3-x^4+8 x^5-16 x^6\right )\right )}{9 x+6 x^3-24 x^4+x^5-8 x^6+16 x^7} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} \left (6 x^2+4 x^5+e^{-\frac {x^2}{-3-x^2+4 x^3}} \left (-9-6 x^2+24 x^3-x^4+8 x^5-16 x^6\right )\right )}{x \left (3+x^2-4 x^3\right )^2} \, dx\\ &=\int \left (-\frac {e^{\frac {x^2}{3+x^2-4 x^3}+\frac {x^2}{-3-x^2+4 x^3}}}{x}+\frac {6 e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (-3-x^2+4 x^3\right )^2}+\frac {4 e^{\frac {x^2}{-3-x^2+4 x^3}} x^4}{\left (-3-x^2+4 x^3\right )^2}\right ) \, dx\\ &=4 \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} x^4}{\left (-3-x^2+4 x^3\right )^2} \, dx+6 \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (-3-x^2+4 x^3\right )^2} \, dx-\int \frac {e^{\frac {x^2}{3+x^2-4 x^3}+\frac {x^2}{-3-x^2+4 x^3}}}{x} \, dx\\ &=4 \int \left (\frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{100 (-1+x)^2}+\frac {9 e^{\frac {x^2}{-3-x^2+4 x^3}}}{500 (-1+x)}+\frac {9 e^{\frac {x^2}{-3-x^2+4 x^3}} (-2+x)}{100 \left (3+3 x+4 x^2\right )^2}-\frac {3 e^{\frac {x^2}{-3-x^2+4 x^3}} (-7+6 x)}{250 \left (3+3 x+4 x^2\right )}\right ) \, dx+6 \int \left (\frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{100 (-1+x)^2}-\frac {3 e^{\frac {x^2}{-3-x^2+4 x^3}}}{250 (-1+x)}+\frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (-33+4 x)}{100 \left (3+3 x+4 x^2\right )^2}+\frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (11+12 x)}{250 \left (3+3 x+4 x^2\right )}\right ) \, dx-\int \frac {1}{x} \, dx\\ &=-\log (x)+\frac {3}{125} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (11+12 x)}{3+3 x+4 x^2} \, dx+\frac {1}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx-\frac {6}{125} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (-7+6 x)}{3+3 x+4 x^2} \, dx+\frac {3}{50} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx+\frac {3}{50} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (-33+4 x)}{\left (3+3 x+4 x^2\right )^2} \, dx+\frac {9}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} (-2+x)}{\left (3+3 x+4 x^2\right )^2} \, dx\\ &=-\log (x)+\frac {3}{125} \int \left (\frac {\left (12-4 i \sqrt {\frac {13}{3}}\right ) e^{\frac {x^2}{-3-x^2+4 x^3}}}{3-i \sqrt {39}+8 x}+\frac {\left (12+4 i \sqrt {\frac {13}{3}}\right ) e^{\frac {x^2}{-3-x^2+4 x^3}}}{3+i \sqrt {39}+8 x}\right ) \, dx+\frac {1}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx-\frac {6}{125} \int \left (\frac {\left (6+\frac {74 i}{\sqrt {39}}\right ) e^{\frac {x^2}{-3-x^2+4 x^3}}}{3-i \sqrt {39}+8 x}+\frac {\left (6-\frac {74 i}{\sqrt {39}}\right ) e^{\frac {x^2}{-3-x^2+4 x^3}}}{3+i \sqrt {39}+8 x}\right ) \, dx+\frac {3}{50} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx+\frac {3}{50} \int \left (-\frac {33 e^{\frac {x^2}{-3-x^2+4 x^3}}}{\left (3+3 x+4 x^2\right )^2}+\frac {4 e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (3+3 x+4 x^2\right )^2}\right ) \, dx+\frac {9}{25} \int \left (-\frac {2 e^{\frac {x^2}{-3-x^2+4 x^3}}}{\left (3+3 x+4 x^2\right )^2}+\frac {e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (3+3 x+4 x^2\right )^2}\right ) \, dx\\ &=-\log (x)+\frac {1}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx+\frac {3}{50} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{(-1+x)^2} \, dx+\frac {6}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (3+3 x+4 x^2\right )^2} \, dx+\frac {9}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}} x}{\left (3+3 x+4 x^2\right )^2} \, dx-\frac {18}{25} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{\left (3+3 x+4 x^2\right )^2} \, dx-\frac {99}{50} \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{\left (3+3 x+4 x^2\right )^2} \, dx+\frac {1}{125} \left (4 \left (9-i \sqrt {39}\right )\right ) \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{3-i \sqrt {39}+8 x} \, dx+\frac {1}{125} \left (4 \left (9+i \sqrt {39}\right )\right ) \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{3+i \sqrt {39}+8 x} \, dx-\frac {\left (4 \left (117-37 i \sqrt {39}\right )\right ) \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{3+i \sqrt {39}+8 x} \, dx}{1625}-\frac {\left (4 \left (117+37 i \sqrt {39}\right )\right ) \int \frac {e^{\frac {x^2}{-3-x^2+4 x^3}}}{3-i \sqrt {39}+8 x} \, dx}{1625}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 1.00 \begin {gather*} -e^{\frac {x^2}{-3-x^2+4 x^3}}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 0.96 \begin {gather*} -e^{\left (\frac {x^{2}}{4 \, x^{3} - x^{2} - 3}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 26, normalized size = 0.96 \begin {gather*} -e^{\left (\frac {x^{2}}{4 \, x^{3} - x^{2} - 3}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 30, normalized size = 1.11
method | result | size |
risch | \(-\ln \relax (x )-{\mathrm e}^{\frac {x^{2}}{\left (x -1\right ) \left (4 x^{2}+3 x +3\right )}}\) | \(30\) |
norman | \(\frac {\left (-4 x^{3}+x^{2}+3\right ) {\mathrm e}^{\frac {x^{2}}{4 x^{3}-x^{2}-3}}}{4 x^{3}-x^{2}-3}-\ln \relax (x )\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 201, normalized size = 7.44 \begin {gather*} \frac {181 \, x^{2} + 12 \, x + 327}{325 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} - \frac {2 \, {\left (109 \, x^{2} + 18 \, x + 3\right )}}{325 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} + \frac {3 \, {\left (72 \, x^{2} - 6 \, x - 1\right )}}{325 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} - \frac {3 \, {\left (24 \, x^{2} - 2 \, x - 217\right )}}{650 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} - \frac {12 \, {\left (12 \, x^{2} - x + 54\right )}}{325 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} + \frac {2 \, x^{2} + 54 \, x + 9}{650 \, {\left (4 \, x^{3} - x^{2} - 3\right )}} - e^{\left (\frac {3 \, x}{5 \, {\left (4 \, x^{2} + 3 \, x + 3\right )}} + \frac {3}{10 \, {\left (4 \, x^{2} + 3 \, x + 3\right )}} + \frac {1}{10 \, {\left (x - 1\right )}}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.45, size = 25, normalized size = 0.93 \begin {gather*} -{\mathrm {e}}^{-\frac {x^2}{-4\,x^3+x^2+3}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 19, normalized size = 0.70 \begin {gather*} - e^{\frac {x^{2}}{4 x^{3} - x^{2} - 3}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________