Optimal. Leaf size=25 \[ \frac {-2+x}{2+x-\frac {1}{15} \left (-1+\frac {1}{2 x}\right ) x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {240 (2-x)}{361-16 \left (x+\frac {29}{4}\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {240 \left (-361+296 x-16 x^2\right )}{\left (361-16 x^2\right )^2} \, dx,x,\frac {29}{4}+x\right )\\ &=240 \operatorname {Subst}\left (\int \frac {-361+296 x-16 x^2}{\left (361-16 x^2\right )^2} \, dx,x,\frac {29}{4}+x\right )\\ &=\frac {240 (2-x)}{361-(29+4 x)^2}-\frac {120}{361} \operatorname {Subst}\left (\int 0 \, dx,x,\frac {29}{4}+x\right )\\ &=\frac {240 (2-x)}{361-(29+4 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.76 \begin {gather*} -\frac {60 (2-x)}{120+58 x+4 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 17, normalized size = 0.68 \begin {gather*} \frac {30 \, {\left (x - 2\right )}}{2 \, x^{2} + 29 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 0.68 \begin {gather*} \frac {30 \, {\left (x - 2\right )}}{2 \, x^{2} + 29 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.68
method | result | size |
risch | \(\frac {15 x -30}{x^{2}+\frac {29}{2} x +30}\) | \(17\) |
gosper | \(\frac {30 x -60}{2 x^{2}+29 x +60}\) | \(18\) |
default | \(-\frac {270}{19 \left (5+2 x \right )}+\frac {420}{19 \left (x +12\right )}\) | \(18\) |
norman | \(\frac {30 x -60}{2 x^{2}+29 x +60}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 17, normalized size = 0.68 \begin {gather*} \frac {30 \, {\left (x - 2\right )}}{2 \, x^{2} + 29 \, x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.10, size = 19, normalized size = 0.76 \begin {gather*} \frac {420}{19\,\left (x+12\right )}-\frac {270}{19\,\left (2\,x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 15, normalized size = 0.60 \begin {gather*} - \frac {60 - 30 x}{2 x^{2} + 29 x + 60} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________