Optimal. Leaf size=28 \[ x^2 \left (3+e^{25} (2+x)^2 \left (6-\left (e^5+x\right )^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 356, normalized size of antiderivative = 12.71, number of steps used = 9, number of rules used = 0, integrand size = 254, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} e^{50} x^{10}+4 e^{55} x^9+8 e^{50} x^9+6 e^{60} x^8+32 e^{55} x^8+12 e^{50} x^8+4 e^{65} x^7+48 e^{60} x^7+72 e^{55} x^7-64 e^{50} x^7+e^{70} x^6+32 e^{65} x^6+132 e^{60} x^6-64 e^{55} x^6-236 e^{50} x^6-6 e^{25} x^6+8 e^{70} x^5+96 e^{65} x^5+96 e^{60} x^5-512 e^{55} x^5-96 e^{50} x^5-12 e^{30} x^5-24 e^{25} x^5+24 e^{70} x^4+128 e^{65} x^4-192 e^{60} x^4-768 e^{55} x^4+672 e^{50} x^4-6 e^{35} x^4-48 e^{30} x^4+12 e^{25} x^4+32 e^{70} x^3+64 e^{65} x^3-384 e^{60} x^3-384 e^{55} x^3+1152 e^{50} x^3-24 e^{35} x^3-48 e^{30} x^3+144 e^{25} x^3+16 e^{70} x^2-192 e^{60} x^2+576 e^{50} x^2-24 e^{35} x^2+144 e^{25} x^2+9 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=9 x^2+e^{25} \int \left (288 x+432 x^2+48 x^3-120 x^4-36 x^5+e^{10} \left (-48 x-72 x^2-24 x^3\right )+e^5 \left (-144 x^2-192 x^3-60 x^4\right )\right ) \, dx+e^{50} \int \left (1152 x+3456 x^2+2688 x^3-480 x^4-1416 x^5-448 x^6+96 x^7+72 x^8+10 x^9+e^{20} \left (32 x+96 x^2+96 x^3+40 x^4+6 x^5\right )+e^{15} \left (192 x^2+512 x^3+480 x^4+192 x^5+28 x^6\right )+e^{10} \left (-384 x-1152 x^2-768 x^3+480 x^4+792 x^5+336 x^6+48 x^7\right )+e^5 \left (-1152 x^2-3072 x^3-2560 x^4-384 x^5+504 x^6+256 x^7+36 x^8\right )\right ) \, dx\\ &=9 x^2+144 e^{25} x^2+576 e^{50} x^2+144 e^{25} x^3+1152 e^{50} x^3+12 e^{25} x^4+672 e^{50} x^4-24 e^{25} x^5-96 e^{50} x^5-6 e^{25} x^6-236 e^{50} x^6-64 e^{50} x^7+12 e^{50} x^8+8 e^{50} x^9+e^{50} x^{10}+e^{30} \int \left (-144 x^2-192 x^3-60 x^4\right ) \, dx+e^{35} \int \left (-48 x-72 x^2-24 x^3\right ) \, dx+e^{55} \int \left (-1152 x^2-3072 x^3-2560 x^4-384 x^5+504 x^6+256 x^7+36 x^8\right ) \, dx+e^{60} \int \left (-384 x-1152 x^2-768 x^3+480 x^4+792 x^5+336 x^6+48 x^7\right ) \, dx+e^{65} \int \left (192 x^2+512 x^3+480 x^4+192 x^5+28 x^6\right ) \, dx+e^{70} \int \left (32 x+96 x^2+96 x^3+40 x^4+6 x^5\right ) \, dx\\ &=9 x^2+144 e^{25} x^2-24 e^{35} x^2+576 e^{50} x^2-192 e^{60} x^2+16 e^{70} x^2+144 e^{25} x^3-48 e^{30} x^3-24 e^{35} x^3+1152 e^{50} x^3-384 e^{55} x^3-384 e^{60} x^3+64 e^{65} x^3+32 e^{70} x^3+12 e^{25} x^4-48 e^{30} x^4-6 e^{35} x^4+672 e^{50} x^4-768 e^{55} x^4-192 e^{60} x^4+128 e^{65} x^4+24 e^{70} x^4-24 e^{25} x^5-12 e^{30} x^5-96 e^{50} x^5-512 e^{55} x^5+96 e^{60} x^5+96 e^{65} x^5+8 e^{70} x^5-6 e^{25} x^6-236 e^{50} x^6-64 e^{55} x^6+132 e^{60} x^6+32 e^{65} x^6+e^{70} x^6-64 e^{50} x^7+72 e^{55} x^7+48 e^{60} x^7+4 e^{65} x^7+12 e^{50} x^8+32 e^{55} x^8+6 e^{60} x^8+8 e^{50} x^9+4 e^{55} x^9+e^{50} x^{10}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 42, normalized size = 1.50 \begin {gather*} x^2 \left (-3+e^{35} (2+x)^2+2 e^{30} x (2+x)^2+e^{25} (2+x)^2 \left (-6+x^2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 248, normalized size = 8.86 \begin {gather*} 9 \, x^{2} + {\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} e^{70} + 4 \, {\left (x^{7} + 8 \, x^{6} + 24 \, x^{5} + 32 \, x^{4} + 16 \, x^{3}\right )} e^{65} + 6 \, {\left (x^{8} + 8 \, x^{7} + 22 \, x^{6} + 16 \, x^{5} - 32 \, x^{4} - 64 \, x^{3} - 32 \, x^{2}\right )} e^{60} + 4 \, {\left (x^{9} + 8 \, x^{8} + 18 \, x^{7} - 16 \, x^{6} - 128 \, x^{5} - 192 \, x^{4} - 96 \, x^{3}\right )} e^{55} + {\left (x^{10} + 8 \, x^{9} + 12 \, x^{8} - 64 \, x^{7} - 236 \, x^{6} - 96 \, x^{5} + 672 \, x^{4} + 1152 \, x^{3} + 576 \, x^{2}\right )} e^{50} - 6 \, {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{35} - 12 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{30} - 6 \, {\left (x^{6} + 4 \, x^{5} - 2 \, x^{4} - 24 \, x^{3} - 24 \, x^{2}\right )} e^{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 247, normalized size = 8.82 \begin {gather*} 9 \, x^{2} + {\left (x^{10} + 8 \, x^{9} + 12 \, x^{8} - 64 \, x^{7} - 236 \, x^{6} - 96 \, x^{5} + 672 \, x^{4} + 1152 \, x^{3} + 576 \, x^{2} + {\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} e^{20} + 4 \, {\left (x^{7} + 8 \, x^{6} + 24 \, x^{5} + 32 \, x^{4} + 16 \, x^{3}\right )} e^{15} + 6 \, {\left (x^{8} + 8 \, x^{7} + 22 \, x^{6} + 16 \, x^{5} - 32 \, x^{4} - 64 \, x^{3} - 32 \, x^{2}\right )} e^{10} + 4 \, {\left (x^{9} + 8 \, x^{8} + 18 \, x^{7} - 16 \, x^{6} - 128 \, x^{5} - 192 \, x^{4} - 96 \, x^{3}\right )} e^{5}\right )} e^{50} - 6 \, {\left (x^{6} + 4 \, x^{5} - 2 \, x^{4} - 24 \, x^{3} - 24 \, x^{2} + {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{10} + 2 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{5}\right )} e^{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 90, normalized size = 3.21
method | result | size |
gosper | \(x^{2} \left ({\mathrm e}^{25} x^{2} {\mathrm e}^{10}+2 \,{\mathrm e}^{5} {\mathrm e}^{25} x^{3}+x^{4} {\mathrm e}^{25}+4 \,{\mathrm e}^{10} {\mathrm e}^{25} x +8 \,{\mathrm e}^{5} {\mathrm e}^{25} x^{2}+4 x^{3} {\mathrm e}^{25}+4 \,{\mathrm e}^{10} {\mathrm e}^{25}+8 \,{\mathrm e}^{5} {\mathrm e}^{25} x -2 x^{2} {\mathrm e}^{25}-24 x \,{\mathrm e}^{25}-24 \,{\mathrm e}^{25}-3\right )^{2}\) | \(90\) |
default | \({\mathrm e}^{50} \left ({\mathrm e}^{20} \left (x^{6}+8 x^{5}+24 x^{4}+32 x^{3}+16 x^{2}\right )+{\mathrm e}^{15} \left (4 x^{7}+32 x^{6}+96 x^{5}+128 x^{4}+64 x^{3}\right )+{\mathrm e}^{10} \left (6 x^{8}+48 x^{7}+132 x^{6}+96 x^{5}-192 x^{4}-384 x^{3}-192 x^{2}\right )+{\mathrm e}^{5} \left (4 x^{9}+32 x^{8}+72 x^{7}-64 x^{6}-512 x^{5}-768 x^{4}-384 x^{3}\right )+x^{10}+8 x^{9}+12 x^{8}-64 x^{7}-236 x^{6}-96 x^{5}+672 x^{4}+1152 x^{3}+576 x^{2}\right )+{\mathrm e}^{25} \left ({\mathrm e}^{10} \left (-6 x^{4}-24 x^{3}-24 x^{2}\right )+{\mathrm e}^{5} \left (-12 x^{5}-48 x^{4}-48 x^{3}\right )-6 x^{6}-24 x^{5}+12 x^{4}+144 x^{3}+144 x^{2}\right )+9 x^{2}\) | \(265\) |
risch | \(9 x^{2}+144 x^{2} {\mathrm e}^{25}+144 x^{3} {\mathrm e}^{25}+12 x^{4} {\mathrm e}^{25}-12 \,{\mathrm e}^{25} x^{5} {\mathrm e}^{5}-48 \,{\mathrm e}^{25} x^{4} {\mathrm e}^{5}-6 \,{\mathrm e}^{25} x^{4} {\mathrm e}^{10}-24 \,{\mathrm e}^{25} x^{3} {\mathrm e}^{10}-24 \,{\mathrm e}^{25} x^{2} {\mathrm e}^{10}-6 \,{\mathrm e}^{25} x^{6}+{\mathrm e}^{50} x^{10}+4 \,{\mathrm e}^{50} x^{9} {\mathrm e}^{5}+32 \,{\mathrm e}^{50} x^{8} {\mathrm e}^{5}+6 \,{\mathrm e}^{50} x^{8} {\mathrm e}^{10}+72 \,{\mathrm e}^{50} x^{7} {\mathrm e}^{5}+48 \,{\mathrm e}^{50} x^{7} {\mathrm e}^{10}+4 \,{\mathrm e}^{50} x^{7} {\mathrm e}^{15}+672 \,{\mathrm e}^{50} x^{4}+1152 \,{\mathrm e}^{50} x^{3}+576 \,{\mathrm e}^{50} x^{2}-24 \,{\mathrm e}^{25} x^{5}+8 \,{\mathrm e}^{50} x^{9}+12 \,{\mathrm e}^{50} x^{8}-64 \,{\mathrm e}^{50} x^{7}-236 \,{\mathrm e}^{50} x^{6}-96 \,{\mathrm e}^{50} x^{5}-64 \,{\mathrm e}^{50} x^{6} {\mathrm e}^{5}+132 \,{\mathrm e}^{50} x^{6} {\mathrm e}^{10}+32 \,{\mathrm e}^{50} x^{6} {\mathrm e}^{15}+{\mathrm e}^{50} x^{6} {\mathrm e}^{20}-512 \,{\mathrm e}^{50} x^{5} {\mathrm e}^{5}+96 \,{\mathrm e}^{50} x^{5} {\mathrm e}^{10}+96 \,{\mathrm e}^{50} x^{5} {\mathrm e}^{15}+8 \,{\mathrm e}^{50} x^{5} {\mathrm e}^{20}-768 \,{\mathrm e}^{50} x^{4} {\mathrm e}^{5}-192 \,{\mathrm e}^{50} x^{4} {\mathrm e}^{10}+128 \,{\mathrm e}^{50} x^{4} {\mathrm e}^{15}+24 \,{\mathrm e}^{50} x^{4} {\mathrm e}^{20}-384 \,{\mathrm e}^{50} x^{3} {\mathrm e}^{5}-384 \,{\mathrm e}^{50} x^{3} {\mathrm e}^{10}+64 \,{\mathrm e}^{50} x^{3} {\mathrm e}^{15}+32 \,{\mathrm e}^{50} x^{3} {\mathrm e}^{20}-192 \,{\mathrm e}^{50} x^{2} {\mathrm e}^{10}+16 \,{\mathrm e}^{50} x^{2} {\mathrm e}^{20}-48 \,{\mathrm e}^{5} {\mathrm e}^{25} x^{3}\) | \(373\) |
norman | \(\left (4 \,{\mathrm e}^{5} {\mathrm e}^{50}+8 \,{\mathrm e}^{50}\right ) x^{9}+\left (6 \,{\mathrm e}^{10} {\mathrm e}^{50}+32 \,{\mathrm e}^{5} {\mathrm e}^{50}+12 \,{\mathrm e}^{50}\right ) x^{8}+\left (4 \,{\mathrm e}^{15} {\mathrm e}^{50}+48 \,{\mathrm e}^{10} {\mathrm e}^{50}+72 \,{\mathrm e}^{5} {\mathrm e}^{50}-64 \,{\mathrm e}^{50}\right ) x^{7}+\left ({\mathrm e}^{20} {\mathrm e}^{50}+32 \,{\mathrm e}^{15} {\mathrm e}^{50}+132 \,{\mathrm e}^{10} {\mathrm e}^{50}-64 \,{\mathrm e}^{5} {\mathrm e}^{50}-236 \,{\mathrm e}^{50}-6 \,{\mathrm e}^{25}\right ) x^{6}+\left (16 \,{\mathrm e}^{20} {\mathrm e}^{50}-192 \,{\mathrm e}^{10} {\mathrm e}^{50}-24 \,{\mathrm e}^{10} {\mathrm e}^{25}+576 \,{\mathrm e}^{50}+144 \,{\mathrm e}^{25}+9\right ) x^{2}+\left (8 \,{\mathrm e}^{20} {\mathrm e}^{50}+96 \,{\mathrm e}^{15} {\mathrm e}^{50}+96 \,{\mathrm e}^{10} {\mathrm e}^{50}-512 \,{\mathrm e}^{5} {\mathrm e}^{50}-12 \,{\mathrm e}^{5} {\mathrm e}^{25}-96 \,{\mathrm e}^{50}-24 \,{\mathrm e}^{25}\right ) x^{5}+\left (24 \,{\mathrm e}^{20} {\mathrm e}^{50}+128 \,{\mathrm e}^{15} {\mathrm e}^{50}-192 \,{\mathrm e}^{10} {\mathrm e}^{50}-6 \,{\mathrm e}^{10} {\mathrm e}^{25}-768 \,{\mathrm e}^{5} {\mathrm e}^{50}-48 \,{\mathrm e}^{5} {\mathrm e}^{25}+672 \,{\mathrm e}^{50}+12 \,{\mathrm e}^{25}\right ) x^{4}+\left (32 \,{\mathrm e}^{20} {\mathrm e}^{50}+64 \,{\mathrm e}^{15} {\mathrm e}^{50}-384 \,{\mathrm e}^{10} {\mathrm e}^{50}-24 \,{\mathrm e}^{10} {\mathrm e}^{25}-384 \,{\mathrm e}^{5} {\mathrm e}^{50}-48 \,{\mathrm e}^{5} {\mathrm e}^{25}+1152 \,{\mathrm e}^{50}+144 \,{\mathrm e}^{25}\right ) x^{3}+{\mathrm e}^{50} x^{10}\) | \(386\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 247, normalized size = 8.82 \begin {gather*} 9 \, x^{2} + {\left (x^{10} + 8 \, x^{9} + 12 \, x^{8} - 64 \, x^{7} - 236 \, x^{6} - 96 \, x^{5} + 672 \, x^{4} + 1152 \, x^{3} + 576 \, x^{2} + {\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} e^{20} + 4 \, {\left (x^{7} + 8 \, x^{6} + 24 \, x^{5} + 32 \, x^{4} + 16 \, x^{3}\right )} e^{15} + 6 \, {\left (x^{8} + 8 \, x^{7} + 22 \, x^{6} + 16 \, x^{5} - 32 \, x^{4} - 64 \, x^{3} - 32 \, x^{2}\right )} e^{10} + 4 \, {\left (x^{9} + 8 \, x^{8} + 18 \, x^{7} - 16 \, x^{6} - 128 \, x^{5} - 192 \, x^{4} - 96 \, x^{3}\right )} e^{5}\right )} e^{50} - 6 \, {\left (x^{6} + 4 \, x^{5} - 2 \, x^{4} - 24 \, x^{3} - 24 \, x^{2} + {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{10} + 2 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3}\right )} e^{5}\right )} e^{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.25, size = 239, normalized size = 8.54 \begin {gather*} {\mathrm {e}}^{50}\,x^{10}+\frac {{\mathrm {e}}^{50}\,\left (36\,{\mathrm {e}}^5+72\right )\,x^9}{9}+\frac {{\mathrm {e}}^{50}\,\left (256\,{\mathrm {e}}^5+48\,{\mathrm {e}}^{10}+96\right )\,x^8}{8}+\frac {{\mathrm {e}}^{50}\,\left (504\,{\mathrm {e}}^5+336\,{\mathrm {e}}^{10}+28\,{\mathrm {e}}^{15}-448\right )\,x^7}{7}+\left (\frac {{\mathrm {e}}^{50}\,\left (792\,{\mathrm {e}}^{10}-384\,{\mathrm {e}}^5+192\,{\mathrm {e}}^{15}+6\,{\mathrm {e}}^{20}-1416\right )}{6}-6\,{\mathrm {e}}^{25}\right )\,x^6+\left (\frac {{\mathrm {e}}^{50}\,\left (480\,{\mathrm {e}}^{10}-2560\,{\mathrm {e}}^5+480\,{\mathrm {e}}^{15}+40\,{\mathrm {e}}^{20}-480\right )}{5}-\frac {{\mathrm {e}}^{25}\,\left (60\,{\mathrm {e}}^5+120\right )}{5}\right )\,x^5+\left (\frac {{\mathrm {e}}^{50}\,\left (512\,{\mathrm {e}}^{15}-768\,{\mathrm {e}}^{10}-3072\,{\mathrm {e}}^5+96\,{\mathrm {e}}^{20}+2688\right )}{4}-\frac {{\mathrm {e}}^{25}\,\left (192\,{\mathrm {e}}^5+24\,{\mathrm {e}}^{10}-48\right )}{4}\right )\,x^4+\left (\frac {{\mathrm {e}}^{50}\,\left (192\,{\mathrm {e}}^{15}-1152\,{\mathrm {e}}^{10}-1152\,{\mathrm {e}}^5+96\,{\mathrm {e}}^{20}+3456\right )}{3}-\frac {{\mathrm {e}}^{25}\,\left (144\,{\mathrm {e}}^5+72\,{\mathrm {e}}^{10}-432\right )}{3}\right )\,x^3+\left (\frac {{\mathrm {e}}^{50}\,\left (32\,{\mathrm {e}}^{20}-384\,{\mathrm {e}}^{10}+1152\right )}{2}-\frac {{\mathrm {e}}^{25}\,\left (48\,{\mathrm {e}}^{10}-288\right )}{2}+9\right )\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 252, normalized size = 9.00 \begin {gather*} x^{10} e^{50} + x^{9} \left (8 e^{50} + 4 e^{55}\right ) + x^{8} \left (12 e^{50} + 32 e^{55} + 6 e^{60}\right ) + x^{7} \left (- 64 e^{50} + 72 e^{55} + 48 e^{60} + 4 e^{65}\right ) + x^{6} \left (- 64 e^{55} - 236 e^{50} - 6 e^{25} + 132 e^{60} + 32 e^{65} + e^{70}\right ) + x^{5} \left (- 512 e^{55} - 96 e^{50} - 12 e^{30} - 24 e^{25} + 96 e^{60} + 96 e^{65} + 8 e^{70}\right ) + x^{4} \left (- 192 e^{60} - 768 e^{55} - 6 e^{35} - 48 e^{30} + 12 e^{25} + 672 e^{50} + 128 e^{65} + 24 e^{70}\right ) + x^{3} \left (- 384 e^{60} - 384 e^{55} - 24 e^{35} - 48 e^{30} + 144 e^{25} + 1152 e^{50} + 64 e^{65} + 32 e^{70}\right ) + x^{2} \left (- 192 e^{60} - 24 e^{35} + 9 + 144 e^{25} + 576 e^{50} + 16 e^{70}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________