Optimal. Leaf size=19 \[ 4 e^{\frac {1+x}{x}} \log \left (\left (-4+e^x\right ) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 20, normalized size of antiderivative = 1.05, number of steps used = 3, number of rules used = 3, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6688, 12, 2288} \begin {gather*} 4 e^{\frac {1}{x}+1} \log \left (-\left (\left (4-e^x\right ) x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{1+\frac {1}{x}} \left (-x \left (-4+e^x (1+x)\right )+\left (-4+e^x\right ) \log \left (\left (-4+e^x\right ) x\right )\right )}{\left (4-e^x\right ) x^2} \, dx\\ &=4 \int \frac {e^{1+\frac {1}{x}} \left (-x \left (-4+e^x (1+x)\right )+\left (-4+e^x\right ) \log \left (\left (-4+e^x\right ) x\right )\right )}{\left (4-e^x\right ) x^2} \, dx\\ &=4 e^{1+\frac {1}{x}} \log \left (-\left (\left (4-e^x\right ) x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 0.89 \begin {gather*} 4 e^{1+\frac {1}{x}} \log \left (\left (-4+e^x\right ) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.25, size = 26, normalized size = 1.37 \begin {gather*} 4 \, e^{\left (-x + \frac {x^{2} + x + 1}{x}\right )} \log \left (x e^{x} - 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left ({\left (x^{2} + x\right )} e^{\left (x + \frac {x + 1}{x}\right )} - 4 \, x e^{\left (\frac {x + 1}{x}\right )} - {\left (e^{\left (x + \frac {x + 1}{x}\right )} - 4 \, e^{\left (\frac {x + 1}{x}\right )}\right )} \log \left (x e^{x} - 4 \, x\right )\right )}}{x^{2} e^{x} - 4 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.07, size = 145, normalized size = 7.63
method | result | size |
risch | \(4 \,{\mathrm e}^{\frac {x +1}{x}} \ln \left ({\mathrm e}^{x}-4\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-4\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-4\right )\right ) {\mathrm e}^{\frac {x +1}{x}}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-4\right )\right )^{2} {\mathrm e}^{\frac {x +1}{x}}+2 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-4\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-4\right )\right )^{2} {\mathrm e}^{\frac {x +1}{x}}-2 i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}-4\right )\right )^{3} {\mathrm e}^{\frac {x +1}{x}}+4 \,{\mathrm e}^{\frac {x +1}{x}} \ln \relax (x )\) | \(145\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 24, normalized size = 1.26 \begin {gather*} 4 \, e^{\left (\frac {1}{x} + 1\right )} \log \relax (x) + 4 \, e^{\left (\frac {1}{x} + 1\right )} \log \left (e^{x} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {\ln \left (x\,{\mathrm {e}}^x-4\,x\right )\,\left (16\,{\mathrm {e}}^{\frac {x+1}{x}}-4\,{\mathrm {e}}^{\frac {x+1}{x}}\,{\mathrm {e}}^x\right )-16\,x\,{\mathrm {e}}^{\frac {x+1}{x}}+{\mathrm {e}}^{\frac {x+1}{x}}\,{\mathrm {e}}^x\,\left (4\,x^2+4\,x\right )}{x^2\,{\mathrm {e}}^x-4\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________