Optimal. Leaf size=25 \[ x+\log \left (x \left (-1+\frac {1}{5} \left (e^{4-x}+\log (-1+x)\right ) \log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 60.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+e^{4-x} (-1+x)-5 x^2+(-1+x) \log (-1+x)+\left (e^{4-x} (-1+x)+x+\left (-1+x^2\right ) \log (-1+x)\right ) \log (x)}{5 x-5 x^2+\left (e^{4-x} \left (-x+x^2\right )+\left (-x+x^2\right ) \log (-1+x)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (5+e^{4-x} (-1+x)-5 x^2+(-1+x) \log (-1+x)+\left (e^{4-x} (-1+x)+x+\left (-1+x^2\right ) \log (-1+x)\right ) \log (x)\right )}{(1-x) x \left (5 e^x-e^4 \log (x)-e^x \log (-1+x) \log (x)\right )} \, dx\\ &=\int \left (\frac {1+\log (x)}{x \log (x)}+\frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{(-1+x) x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx\\ &=\int \frac {1+\log (x)}{x \log (x)} \, dx+\int \frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{(-1+x) x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx\\ &=\int \left (\frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}-\frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1+x}{x} \, dx,x,\log (x)\right )\\ &=\int \frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-\int \frac {e^x \left (-5+5 x+5 x \log (x)-5 x^2 \log (x)+x \log ^2(x)-x \log (-1+x) \log ^2(x)+x^2 \log (-1+x) \log ^2(x)\right )}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+\operatorname {Subst}\left (\int \left (1+\frac {1}{x}\right ) \, dx,x,\log (x)\right )\\ &=\log (x)+\log (\log (x))-\int \left (\frac {5 e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}-\frac {5 e^x x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {5 e^x}{\log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}-\frac {5 e^x}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}-\frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}\right ) \, dx+\int \left (\frac {5 e^x x}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}-\frac {5 e^x x^2}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}-\frac {5 e^x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {5 e^x x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x x \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}-\frac {e^x x \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x x^2 \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx\\ &=\log (x)+\log (\log (x))-5 \int \frac {e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+5 \int \frac {e^x x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+5 \int \frac {e^x x}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-5 \int \frac {e^x x^2}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-5 \int \frac {e^x}{\log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-5 \int \frac {e^x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+5 \int \frac {e^x}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+5 \int \frac {e^x x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-\int \frac {e^x \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+\int \frac {e^x x \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+\int \frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx-\int \frac {e^x x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx-\int \frac {e^x x \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+\int \frac {e^x x^2 \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx\\ &=\log (x)+\log (\log (x))-5 \int \frac {e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+5 \int \frac {e^x x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx-5 \int \frac {e^x}{\log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx-5 \int \frac {e^x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+5 \int \frac {e^x}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+5 \int \left (\frac {e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx-5 \int \left (\frac {e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}\right ) \, dx+5 \int \left (\frac {e^x}{\log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x}{(-1+x) \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx-\int \frac {e^x \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+\int \frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx-\int \frac {e^x x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+\int \left (\frac {e^x \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx-\int \left (\frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}\right ) \, dx+\int \left (\frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}+\frac {e^x \log (-1+x) \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )}+\frac {e^x x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)}\right ) \, dx\\ &=\log (x)+\log (\log (x))-5 \int \frac {e^x}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx+5 \int \frac {e^x}{x \log (x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+\int \frac {e^x \log (x)}{(-1+x) \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right )} \, dx+\int \frac {e^x \log (-1+x) \log (x)}{-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 26, normalized size = 1.04 \begin {gather*} \log (x)+\log \left (-5 e^x+e^4 \log (x)+e^x \log (-1+x) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 47, normalized size = 1.88 \begin {gather*} x + \log \relax (x) + \log \left (\frac {{\left (e^{\left (-x + 4\right )} + \log \left (x - 1\right )\right )} \log \relax (x) - 5}{e^{\left (-x + 4\right )} + \log \left (x - 1\right )}\right ) + \log \left (e^{\left (-x + 4\right )} + \log \left (x - 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 23, normalized size = 0.92 \begin {gather*} x + \log \left (e^{\left (-x + 4\right )} \log \relax (x) + \log \left (x - 1\right ) \log \relax (x) - 5\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.20
method | result | size |
risch | \(x +\ln \relax (x )+\ln \left (\ln \relax (x )\right )+\ln \left (\ln \left (x -1\right )+\frac {\ln \relax (x ) {\mathrm e}^{-x +4}-5}{\ln \relax (x )}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 36, normalized size = 1.44 \begin {gather*} x + \log \relax (x) + \log \left (\frac {{\left (e^{x} \log \left (x - 1\right ) \log \relax (x) + e^{4} \log \relax (x) - 5 \, e^{x}\right )} e^{\left (-x\right )}}{\log \relax (x)}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.32, size = 31, normalized size = 1.24 \begin {gather*} x+\ln \left (\ln \relax (x)\right )+\ln \left (\frac {\ln \left (x-1\right )\,\ln \relax (x)+{\mathrm {e}}^{4-x}\,\ln \relax (x)-5}{\ln \relax (x)}\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.91, size = 29, normalized size = 1.16 \begin {gather*} x + \log {\relax (x )} + \log {\left (\frac {\log {\relax (x )} \log {\left (x - 1 \right )} - 5}{\log {\relax (x )}} + e^{4 - x} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________