Optimal. Leaf size=21 \[ 3 \left (25+x (2+x)+\frac {100 x^2}{(2+x+\log (x))^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48+720 x+108 x^2+42 x^3+6 x^4+\left (72+744 x+90 x^2+18 x^3\right ) \log (x)+\left (36+54 x+18 x^2\right ) \log ^2(x)+(6+6 x) \log ^3(x)}{8+12 x+6 x^2+x^3+\left (12+12 x+3 x^2\right ) \log (x)+(6+3 x) \log ^2(x)+\log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 \left (8+120 x+18 x^2+7 x^3+x^4+\left (12+124 x+15 x^2+3 x^3\right ) \log (x)+3 \left (2+3 x+x^2\right ) \log ^2(x)+(1+x) \log ^3(x)\right )}{(2+x+\log (x))^3} \, dx\\ &=6 \int \frac {8+120 x+18 x^2+7 x^3+x^4+\left (12+124 x+15 x^2+3 x^3\right ) \log (x)+3 \left (2+3 x+x^2\right ) \log ^2(x)+(1+x) \log ^3(x)}{(2+x+\log (x))^3} \, dx\\ &=6 \int \left (1+x-\frac {100 x (1+x)}{(2+x+\log (x))^3}+\frac {100 x}{(2+x+\log (x))^2}\right ) \, dx\\ &=6 x+3 x^2-600 \int \frac {x (1+x)}{(2+x+\log (x))^3} \, dx+600 \int \frac {x}{(2+x+\log (x))^2} \, dx\\ &=6 x+3 x^2+600 \int \frac {x}{(2+x+\log (x))^2} \, dx-600 \int \left (\frac {x}{(2+x+\log (x))^3}+\frac {x^2}{(2+x+\log (x))^3}\right ) \, dx\\ &=6 x+3 x^2-600 \int \frac {x}{(2+x+\log (x))^3} \, dx-600 \int \frac {x^2}{(2+x+\log (x))^3} \, dx+600 \int \frac {x}{(2+x+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 16, normalized size = 0.76 \begin {gather*} 3 x \left (2+x+\frac {100 x}{(2+x+\log (x))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 68, normalized size = 3.24 \begin {gather*} \frac {3 \, {\left (x^{4} + 6 \, x^{3} + {\left (x^{2} + 2 \, x\right )} \log \relax (x)^{2} + 112 \, x^{2} + 2 \, {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \log \relax (x) + 8 \, x\right )}}{x^{2} + 2 \, {\left (x + 2\right )} \log \relax (x) + \log \relax (x)^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 59, normalized size = 2.81 \begin {gather*} 3 \, x^{2} + 6 \, x + \frac {300 \, {\left (x^{3} + x^{2}\right )}}{x^{3} + 2 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + 5 \, x^{2} + 6 \, x \log \relax (x) + \log \relax (x)^{2} + 8 \, x + 4 \, \log \relax (x) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 1.05
method | result | size |
risch | \(3 x^{2}+6 x +\frac {300 x^{2}}{\left (x +\ln \relax (x )+2\right )^{2}}\) | \(22\) |
norman | \(\frac {-48 \ln \relax (x )-24 x -12 \ln \relax (x )^{2}+324 x^{2}+18 x^{3}+3 x^{4}+6 x \ln \relax (x )^{2}+24 x^{2} \ln \relax (x )+3 x^{2} \ln \relax (x )^{2}+6 x^{3} \ln \relax (x )-48}{\left (x +\ln \relax (x )+2\right )^{2}}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 68, normalized size = 3.24 \begin {gather*} \frac {3 \, {\left (x^{4} + 6 \, x^{3} + {\left (x^{2} + 2 \, x\right )} \log \relax (x)^{2} + 112 \, x^{2} + 2 \, {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \log \relax (x) + 8 \, x\right )}}{x^{2} + 2 \, {\left (x + 2\right )} \log \relax (x) + \log \relax (x)^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.40, size = 68, normalized size = 3.24 \begin {gather*} 3\,x\,\left (x+2\right )+\frac {3\,x\,\left (x^3+6\,x^2+112\,x+8\right )-3\,x\,{\left (x+2\right )}^3+\ln \relax (x)\,\left (3\,x\,\left (2\,x^2+8\,x+8\right )-3\,x\,\left (2\,x+4\right )\,\left (x+2\right )\right )}{{\left (x+\ln \relax (x)+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 34, normalized size = 1.62 \begin {gather*} 3 x^{2} + \frac {300 x^{2}}{x^{2} + 4 x + \left (2 x + 4\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 4} + 6 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________