Optimal. Leaf size=25 \[ x \left (e^{e^x x^2}+x\right ) \left (-\frac {1}{5}-e^x+2 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} \left (-2 x+30 x^2+e^x \left (-10 x-5 x^2\right )+e^{e^x x^2} \left (-1+20 x+e^{2 x} \left (-10 x^2-5 x^3\right )+e^x \left (-5-5 x-2 x^2+19 x^3+10 x^4\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (-2 x+30 x^2+e^x \left (-10 x-5 x^2\right )+e^{e^x x^2} \left (-1+20 x+e^{2 x} \left (-10 x^2-5 x^3\right )+e^x \left (-5-5 x-2 x^2+19 x^3+10 x^4\right )\right )\right ) \, dx\\ &=-\frac {x^2}{5}+2 x^3+\frac {1}{5} \int e^x \left (-10 x-5 x^2\right ) \, dx+\frac {1}{5} \int e^{e^x x^2} \left (-1+20 x+e^{2 x} \left (-10 x^2-5 x^3\right )+e^x \left (-5-5 x-2 x^2+19 x^3+10 x^4\right )\right ) \, dx\\ &=-\frac {x^2}{5}+2 x^3+\frac {1}{5} \int e^x (-10-5 x) x \, dx+\frac {1}{5} \int \left (-e^{e^x x^2}+20 e^{e^x x^2} x-5 e^{2 x+e^x x^2} x^2 (2+x)+e^{x+e^x x^2} \left (-5-5 x-2 x^2+19 x^3+10 x^4\right )\right ) \, dx\\ &=-\frac {x^2}{5}+2 x^3-\frac {1}{5} \int e^{e^x x^2} \, dx+\frac {1}{5} \int \left (-10 e^x x-5 e^x x^2\right ) \, dx+\frac {1}{5} \int e^{x+e^x x^2} \left (-5-5 x-2 x^2+19 x^3+10 x^4\right ) \, dx+4 \int e^{e^x x^2} x \, dx-\int e^{2 x+e^x x^2} x^2 (2+x) \, dx\\ &=-\frac {x^2}{5}+2 x^3-\frac {1}{5} \int e^{e^x x^2} \, dx+\frac {1}{5} \int \left (-5 e^{x+e^x x^2}-5 e^{x+e^x x^2} x-2 e^{x+e^x x^2} x^2+19 e^{x+e^x x^2} x^3+10 e^{x+e^x x^2} x^4\right ) \, dx-2 \int e^x x \, dx+4 \int e^{e^x x^2} x \, dx-\int e^x x^2 \, dx-\int \left (2 e^{2 x+e^x x^2} x^2+e^{2 x+e^x x^2} x^3\right ) \, dx\\ &=-2 e^x x-\frac {x^2}{5}-e^x x^2+2 x^3-\frac {1}{5} \int e^{e^x x^2} \, dx-\frac {2}{5} \int e^{x+e^x x^2} x^2 \, dx+2 \int e^x \, dx+2 \int e^x x \, dx-2 \int e^{2 x+e^x x^2} x^2 \, dx+2 \int e^{x+e^x x^2} x^4 \, dx+\frac {19}{5} \int e^{x+e^x x^2} x^3 \, dx+4 \int e^{e^x x^2} x \, dx-\int e^{x+e^x x^2} \, dx-\int e^{x+e^x x^2} x \, dx-\int e^{2 x+e^x x^2} x^3 \, dx\\ &=2 e^x-\frac {x^2}{5}-e^x x^2+2 x^3-\frac {1}{5} \int e^{e^x x^2} \, dx-\frac {2}{5} \int e^{x+e^x x^2} x^2 \, dx-2 \int e^x \, dx-2 \int e^{2 x+e^x x^2} x^2 \, dx+2 \int e^{x+e^x x^2} x^4 \, dx+\frac {19}{5} \int e^{x+e^x x^2} x^3 \, dx+4 \int e^{e^x x^2} x \, dx-\int e^{x+e^x x^2} \, dx-\int e^{x+e^x x^2} x \, dx-\int e^{2 x+e^x x^2} x^3 \, dx\\ &=-\frac {x^2}{5}-e^x x^2+2 x^3-\frac {1}{5} \int e^{e^x x^2} \, dx-\frac {2}{5} \int e^{x+e^x x^2} x^2 \, dx-2 \int e^{2 x+e^x x^2} x^2 \, dx+2 \int e^{x+e^x x^2} x^4 \, dx+\frac {19}{5} \int e^{x+e^x x^2} x^3 \, dx+4 \int e^{e^x x^2} x \, dx-\int e^{x+e^x x^2} \, dx-\int e^{x+e^x x^2} x \, dx-\int e^{2 x+e^x x^2} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 26, normalized size = 1.04 \begin {gather*} \frac {1}{5} x \left (e^{e^x x^2}+x\right ) \left (-1-5 e^x+10 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 41, normalized size = 1.64 \begin {gather*} 2 \, x^{3} - x^{2} e^{x} - \frac {1}{5} \, x^{2} + \frac {1}{5} \, {\left (10 \, x^{2} - 5 \, x e^{x} - x\right )} e^{\left (x^{2} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 6 \, x^{2} - \frac {1}{5} \, {\left (5 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{\left (2 \, x\right )} - {\left (10 \, x^{4} + 19 \, x^{3} - 2 \, x^{2} - 5 \, x - 5\right )} e^{x} - 20 \, x + 1\right )} e^{\left (x^{2} e^{x}\right )} - {\left (x^{2} + 2 \, x\right )} e^{x} - \frac {2}{5} \, x\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 38, normalized size = 1.52
method | result | size |
risch | \(\frac {\left (10 x -5 \,{\mathrm e}^{x}-1\right ) x \,{\mathrm e}^{{\mathrm e}^{x} x^{2}}}{5}-{\mathrm e}^{x} x^{2}+2 x^{3}-\frac {x^{2}}{5}\) | \(38\) |
default | \(-\frac {x^{2}}{5}+2 x^{3}+2 x^{2} {\mathrm e}^{{\mathrm e}^{x} x^{2}}-\frac {{\mathrm e}^{{\mathrm e}^{x} x^{2}} x}{5}-{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x} x^{2}} x -{\mathrm e}^{x} x^{2}\) | \(53\) |
norman | \(-\frac {x^{2}}{5}+2 x^{3}+2 x^{2} {\mathrm e}^{{\mathrm e}^{x} x^{2}}-\frac {{\mathrm e}^{{\mathrm e}^{x} x^{2}} x}{5}-{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x} x^{2}} x -{\mathrm e}^{x} x^{2}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 41, normalized size = 1.64 \begin {gather*} 2 \, x^{3} - x^{2} e^{x} - \frac {1}{5} \, x^{2} + \frac {1}{5} \, {\left (10 \, x^{2} - 5 \, x e^{x} - x\right )} e^{\left (x^{2} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.15, size = 21, normalized size = 0.84 \begin {gather*} -\frac {x\,\left (x+{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}\right )\,\left (5\,{\mathrm {e}}^x-10\,x+1\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 39, normalized size = 1.56 \begin {gather*} 2 x^{3} - x^{2} e^{x} - \frac {x^{2}}{5} + \frac {\left (10 x^{2} - 5 x e^{x} - x\right ) e^{x^{2} e^{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________