Optimal. Leaf size=26 \[ \frac {4 x}{e^{e^x}+\frac {5-x}{x}+\log \left (-e^x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {40 x-4 x^2-4 x^3+e^{e^x} \left (4 x^2-4 e^x x^3\right )+4 x^2 \log \left (-e^x\right )}{25-10 x+x^2+e^{2 e^x} x^2+e^{e^x} \left (10 x-2 x^2\right )+\left (10 x-2 x^2+2 e^{e^x} x^2\right ) \log \left (-e^x\right )+x^2 \log ^2\left (-e^x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (10-x+e^{e^x} x-\left (1+e^{e^x+x}\right ) x^2+x \log \left (-e^x\right )\right )}{\left (5+\left (-1+e^{e^x}\right ) x+x \log \left (-e^x\right )\right )^2} \, dx\\ &=4 \int \frac {x \left (10-x+e^{e^x} x-\left (1+e^{e^x+x}\right ) x^2+x \log \left (-e^x\right )\right )}{\left (5+\left (-1+e^{e^x}\right ) x+x \log \left (-e^x\right )\right )^2} \, dx\\ &=4 \int \left (\frac {10 x}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}-\frac {x^2}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}+\frac {e^{e^x} x^2}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}-\frac {x^3}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}-\frac {e^{e^x+x} x^3}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}+\frac {x^2 \log \left (-e^x\right )}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {x^2}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx\right )+4 \int \frac {e^{e^x} x^2}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx-4 \int \frac {x^3}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx-4 \int \frac {e^{e^x+x} x^3}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx+4 \int \frac {x^2 \log \left (-e^x\right )}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx+40 \int \frac {x}{\left (5-x+e^{e^x} x+x \log \left (-e^x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.65, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 x^2}{5+\left (-1+e^{e^x}\right ) x+x \log \left (-e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.82, size = 24, normalized size = 0.92 \begin {gather*} \frac {4 \, x^{2}}{i \, \pi x + x^{2} + x e^{\left (e^{x}\right )} - x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 81, normalized size = 3.12 \begin {gather*} \frac {4 \, {\left (x^{4} + x^{3} e^{\left (e^{x}\right )} - x^{3} + 5 \, x^{2}\right )}}{\pi ^{2} x^{2} + x^{4} + 2 \, x^{3} e^{\left (e^{x}\right )} - 2 \, x^{3} + x^{2} e^{\left (2 \, e^{x}\right )} - 2 \, x^{2} e^{\left (e^{x}\right )} + 11 \, x^{2} + 10 \, x e^{\left (e^{x}\right )} - 10 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.01, size = 50, normalized size = 1.92
method | result | size |
default | \(\frac {\left (-4 \ln \left (-{\mathrm e}^{x}\right )+4 x +4\right ) x -4 x \,{\mathrm e}^{{\mathrm e}^{x}}-20}{x^{2}+x \,{\mathrm e}^{{\mathrm e}^{x}}+x \left (\ln \left (-{\mathrm e}^{x}\right )-x \right )-x +5}\) | \(50\) |
risch | \(\frac {8 i x^{2}}{2 \pi x \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}-2 \pi x \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{3}-2 \pi x +2 i x \,{\mathrm e}^{{\mathrm e}^{x}}+2 i x \ln \left ({\mathrm e}^{x}\right )-2 i x +10 i}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 24, normalized size = 0.92 \begin {gather*} \frac {4 \, x^{2}}{x e^{\left (e^{x}\right )} + x \log \left (-e^{x}\right ) - x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 98, normalized size = 3.77 \begin {gather*} \frac {4\,\left (5\,x^3\,{\mathrm {e}}^x-x^4\,{\mathrm {e}}^x+x^5\,{\mathrm {e}}^x+5\,x^2-x^4+\pi \,x^4\,{\mathrm {e}}^x\,1{}\mathrm {i}\right )}{\left (x\,{\mathrm {e}}^{{\mathrm {e}}^x}-x+x^2+5+\pi \,x\,1{}\mathrm {i}\right )\,\left (x^3\,{\mathrm {e}}^x-x^2\,{\mathrm {e}}^x+5\,x\,{\mathrm {e}}^x-x^2+5+\pi \,x^2\,{\mathrm {e}}^x\,1{}\mathrm {i}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.67, size = 24, normalized size = 0.92 \begin {gather*} - \frac {4 x^{2}}{- x^{2} - x e^{e^{x}} + x - i \pi x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________