Optimal. Leaf size=21 \[ -1+\frac {36}{5 e^2 x}+(4+x)^2+\log (3 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 14} \begin {gather*} x^2+8 x+\frac {36}{5 e^2 x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-36+e^2 \left (5 x+40 x^2+10 x^3\right )}{x^2} \, dx}{5 e^2}\\ &=\frac {\int \left (40 e^2-\frac {36}{x^2}+\frac {5 e^2}{x}+10 e^2 x\right ) \, dx}{5 e^2}\\ &=\frac {36}{5 e^2 x}+8 x+x^2+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 0.90 \begin {gather*} \frac {36}{5 e^2 x}+8 x+x^2+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 29, normalized size = 1.38 \begin {gather*} \frac {{\left (5 \, x e^{2} \log \relax (x) + 5 \, {\left (x^{3} + 8 \, x^{2}\right )} e^{2} + 36\right )} e^{\left (-2\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 29, normalized size = 1.38 \begin {gather*} \frac {1}{5} \, {\left (5 \, x^{2} e^{2} + 40 \, x e^{2} + 5 \, e^{2} \log \left ({\left | x \right |}\right ) + \frac {36}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.81
method | result | size |
risch | \(x^{2}+8 x +\ln \relax (x )+\frac {36 \,{\mathrm e}^{-2}}{5 x}\) | \(17\) |
norman | \(\frac {x^{3}+8 x^{2}+\frac {36 \,{\mathrm e}^{-2}}{5}}{x}+\ln \relax (x )\) | \(23\) |
default | \(\frac {{\mathrm e}^{-2} \left (5 x^{2} {\mathrm e}^{2}+40 \,{\mathrm e}^{2} x +5 \,{\mathrm e}^{2} \ln \relax (x )+\frac {36}{x}\right )}{5}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 28, normalized size = 1.33 \begin {gather*} \frac {1}{5} \, {\left (5 \, x^{2} e^{2} + 40 \, x e^{2} + 5 \, e^{2} \log \relax (x) + \frac {36}{x}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 16, normalized size = 0.76 \begin {gather*} 8\,x+\ln \relax (x)+\frac {36\,{\mathrm {e}}^{-2}}{5\,x}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 31, normalized size = 1.48 \begin {gather*} \frac {5 x^{2} e^{2} + 40 x e^{2} + 5 e^{2} \log {\relax (x )} + \frac {36}{x}}{5 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________