Optimal. Leaf size=30 \[ e^x \left (-e^{3 x}+x+\frac {2 x}{\left (e^x-x+x^2\right )^2}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 145.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{6 x} \left (2 x+x^2\right )+e^{5 x} \left (-10 x^2+5 x^3+5 x^4\right )+e^{4 x} \left (8 x-4 x^2+20 x^3-30 x^4+10 x^6\right )+e^{3 x} \left (-16 x^2+12 x^3-24 x^4+50 x^5-30 x^6-10 x^7+10 x^8\right )+e^{2 x} \left (8 x-12 x^2+8 x^3+4 x^4-6 x^5-31 x^6+40 x^7-10 x^8-10 x^9+5 x^{10}\right )+e^x \left (8 x^2-28 x^3+4 x^4-12 x^5+26 x^6-11 x^7-11 x^8+10 x^9-3 x^{11}+x^{12}\right )+e^{6 x} \left (7 e^{6 x}+e^{5 x} \left (-35 x+35 x^2\right )+e^{4 x} \left (70 x^2-140 x^3+70 x^4\right )+e^{3 x} \left (-70 x^3+210 x^4-210 x^5+70 x^6\right )+e^{2 x} \left (35 x^4-140 x^5+210 x^6-140 x^7+35 x^8\right )+e^x \left (-7 x^5+35 x^6-70 x^7+70 x^8-35 x^9+7 x^{10}\right )\right )+e^{3 x} \left (e^{6 x} (-2-8 x)+e^{5 x} \left (10 x+30 x^2-40 x^3\right )+e^{4 x} \left (-4-8 x-20 x^2-40 x^3+140 x^4-80 x^5\right )+e^{3 x} \left (4 x+36 x^2-12 x^3+20 x^4-180 x^5+220 x^6-80 x^7\right )+e^{2 x} \left (4 x^2-64 x^3+90 x^4-40 x^5+100 x^6-200 x^7+150 x^8-40 x^9\right )+e^x \left (-4 x^3+36 x^4-74 x^5+58 x^6-36 x^7+60 x^8-70 x^9+38 x^{10}-8 x^{11}\right )\right )}{e^{5 x}-x^5+5 x^6-10 x^7+10 x^8-5 x^9+x^{10}+e^{4 x} \left (-5 x+5 x^2\right )+e^{3 x} \left (10 x^2-20 x^3+10 x^4\right )+e^{2 x} \left (-10 x^3+30 x^4-30 x^5+10 x^6\right )+e^x \left (5 x^4-20 x^5+30 x^6-20 x^7+5 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (7 e^{11 x}+35 e^{10 x} (-1+x) x+70 e^{9 x} (-1+x)^2 x^2+2 e^{2 x} x^2 \left (-8+6 x-12 x^2+25 x^3-15 x^4-5 x^5+5 x^6\right )+e^{8 x} \left (-2-8 x-70 x^3+210 x^4-210 x^5+70 x^6\right )-e^{5 x} x \left (-6-37 x+12 x^2-20 x^3+180 x^4-220 x^5+80 x^6\right )+5 e^{7 x} x \left (2+6 x-8 x^2+7 x^3-28 x^4+42 x^5-28 x^6+7 x^7\right )-e^{4 x} x^2 \left (6+59 x-95 x^2+40 x^3-100 x^4+200 x^5-150 x^6+40 x^7\right )+e^x x \left (8-12 x+8 x^2+4 x^3-6 x^4-31 x^5+40 x^6-10 x^7-10 x^8+5 x^9\right )+x^2 \left (8-28 x+4 x^2-12 x^3+26 x^4-11 x^5-11 x^6+10 x^7-3 x^9+x^{10}\right )-2 e^{3 x} x \left (-4+2 x-8 x^2-3 x^3+37 x^4-34 x^5+18 x^6-30 x^7+35 x^8-19 x^9+4 x^{10}\right )+e^{6 x} \left (-4-8 x-20 x^2-40 x^3+140 x^4-87 x^5+35 x^6-70 x^7+70 x^8-35 x^9+7 x^{10}\right )\right )}{\left (e^x+(-1+x) x\right )^5} \, dx\\ &=\int \left (7 e^{7 x}-4 e^{2 x} (1+2 x)-2 e^{4 x} (1+4 x)+\frac {16 e^x x^2 \left (1-3 x+x^2\right )}{\left (e^x-x+x^2\right )^5}-\frac {4 e^x x (-2+3 x)}{\left (e^x-x+x^2\right )^4}-\frac {12 e^x x^2 \left (3-8 x+5 x^2\right )}{e^x-x+x^2}+e^x x \left (-14+17 x+8 x^2\right )-\frac {4 e^x x \left (-2+x+7 x^2-31 x^3+45 x^4-25 x^5+4 x^6\right )}{\left (e^x-x+x^2\right )^2}+\frac {8 e^x x^2 \left (1-3 x+6 x^3-13 x^4+13 x^5-6 x^6+x^7\right )}{\left (e^x-x+x^2\right )^3}\right ) \, dx\\ &=-\left (2 \int e^{4 x} (1+4 x) \, dx\right )-4 \int e^{2 x} (1+2 x) \, dx-4 \int \frac {e^x x (-2+3 x)}{\left (e^x-x+x^2\right )^4} \, dx-4 \int \frac {e^x x \left (-2+x+7 x^2-31 x^3+45 x^4-25 x^5+4 x^6\right )}{\left (e^x-x+x^2\right )^2} \, dx+7 \int e^{7 x} \, dx+8 \int \frac {e^x x^2 \left (1-3 x+6 x^3-13 x^4+13 x^5-6 x^6+x^7\right )}{\left (e^x-x+x^2\right )^3} \, dx-12 \int \frac {e^x x^2 \left (3-8 x+5 x^2\right )}{e^x-x+x^2} \, dx+16 \int \frac {e^x x^2 \left (1-3 x+x^2\right )}{\left (e^x-x+x^2\right )^5} \, dx+\int e^x x \left (-14+17 x+8 x^2\right ) \, dx\\ &=e^{7 x}-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)+2 \int e^{4 x} \, dx+4 \int e^{2 x} \, dx-4 \int \left (-\frac {2 e^x x}{\left (e^x-x+x^2\right )^4}+\frac {3 e^x x^2}{\left (e^x-x+x^2\right )^4}\right ) \, dx-4 \int \left (-\frac {2 e^x x}{\left (e^x-x+x^2\right )^2}+\frac {e^x x^2}{\left (e^x-x+x^2\right )^2}+\frac {7 e^x x^3}{\left (e^x-x+x^2\right )^2}-\frac {31 e^x x^4}{\left (e^x-x+x^2\right )^2}+\frac {45 e^x x^5}{\left (e^x-x+x^2\right )^2}-\frac {25 e^x x^6}{\left (e^x-x+x^2\right )^2}+\frac {4 e^x x^7}{\left (e^x-x+x^2\right )^2}\right ) \, dx+8 \int \left (\frac {e^x x^2}{\left (e^x-x+x^2\right )^3}-\frac {3 e^x x^3}{\left (e^x-x+x^2\right )^3}+\frac {6 e^x x^5}{\left (e^x-x+x^2\right )^3}-\frac {13 e^x x^6}{\left (e^x-x+x^2\right )^3}+\frac {13 e^x x^7}{\left (e^x-x+x^2\right )^3}-\frac {6 e^x x^8}{\left (e^x-x+x^2\right )^3}+\frac {e^x x^9}{\left (e^x-x+x^2\right )^3}\right ) \, dx-12 \int \left (\frac {3 e^x x^2}{e^x-x+x^2}-\frac {8 e^x x^3}{e^x-x+x^2}+\frac {5 e^x x^4}{e^x-x+x^2}\right ) \, dx+16 \int \left (\frac {e^x x^2}{\left (e^x-x+x^2\right )^5}-\frac {3 e^x x^3}{\left (e^x-x+x^2\right )^5}+\frac {e^x x^4}{\left (e^x-x+x^2\right )^5}\right ) \, dx+\int \left (-14 e^x x+17 e^x x^2+8 e^x x^3\right ) \, dx\\ &=2 e^{2 x}+\frac {e^{4 x}}{2}+e^{7 x}-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)-4 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^2} \, dx+8 \int e^x x^3 \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^4} \, dx+8 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x^9}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^2} \, dx-12 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^4} \, dx-14 \int e^x x \, dx+16 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^5} \, dx+16 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^5} \, dx-16 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^2} \, dx+17 \int e^x x^2 \, dx-24 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^3} \, dx-28 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^2} \, dx-36 \int \frac {e^x x^2}{e^x-x+x^2} \, dx-48 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^5} \, dx+48 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^3} \, dx-48 \int \frac {e^x x^8}{\left (e^x-x+x^2\right )^3} \, dx-60 \int \frac {e^x x^4}{e^x-x+x^2} \, dx+96 \int \frac {e^x x^3}{e^x-x+x^2} \, dx+100 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^2} \, dx-104 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^3} \, dx+104 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^3} \, dx+124 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^2} \, dx-180 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^2} \, dx\\ &=2 e^{2 x}+\frac {e^{4 x}}{2}+e^{7 x}-14 e^x x+17 e^x x^2+8 e^x x^3-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)-4 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^2} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^4} \, dx+8 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x^9}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^2} \, dx-12 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^4} \, dx+14 \int e^x \, dx+16 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^5} \, dx+16 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^5} \, dx-16 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^2} \, dx-24 \int e^x x^2 \, dx-24 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^3} \, dx-28 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^2} \, dx-34 \int e^x x \, dx-36 \int \frac {e^x x^2}{e^x-x+x^2} \, dx-48 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^5} \, dx+48 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^3} \, dx-48 \int \frac {e^x x^8}{\left (e^x-x+x^2\right )^3} \, dx-60 \int \frac {e^x x^4}{e^x-x+x^2} \, dx+96 \int \frac {e^x x^3}{e^x-x+x^2} \, dx+100 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^2} \, dx-104 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^3} \, dx+104 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^3} \, dx+124 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^2} \, dx-180 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^2} \, dx\\ &=14 e^x+2 e^{2 x}+\frac {e^{4 x}}{2}+e^{7 x}-48 e^x x-7 e^x x^2+8 e^x x^3-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)-4 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^2} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^4} \, dx+8 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x^9}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^2} \, dx-12 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^4} \, dx+16 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^5} \, dx+16 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^5} \, dx-16 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^2} \, dx-24 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^3} \, dx-28 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^2} \, dx+34 \int e^x \, dx-36 \int \frac {e^x x^2}{e^x-x+x^2} \, dx+48 \int e^x x \, dx-48 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^5} \, dx+48 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^3} \, dx-48 \int \frac {e^x x^8}{\left (e^x-x+x^2\right )^3} \, dx-60 \int \frac {e^x x^4}{e^x-x+x^2} \, dx+96 \int \frac {e^x x^3}{e^x-x+x^2} \, dx+100 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^2} \, dx-104 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^3} \, dx+104 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^3} \, dx+124 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^2} \, dx-180 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^2} \, dx\\ &=48 e^x+2 e^{2 x}+\frac {e^{4 x}}{2}+e^{7 x}-7 e^x x^2+8 e^x x^3-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)-4 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^2} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^4} \, dx+8 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x^9}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^2} \, dx-12 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^4} \, dx+16 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^5} \, dx+16 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^5} \, dx-16 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^2} \, dx-24 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^3} \, dx-28 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^2} \, dx-36 \int \frac {e^x x^2}{e^x-x+x^2} \, dx-48 \int e^x \, dx-48 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^5} \, dx+48 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^3} \, dx-48 \int \frac {e^x x^8}{\left (e^x-x+x^2\right )^3} \, dx-60 \int \frac {e^x x^4}{e^x-x+x^2} \, dx+96 \int \frac {e^x x^3}{e^x-x+x^2} \, dx+100 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^2} \, dx-104 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^3} \, dx+104 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^3} \, dx+124 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^2} \, dx-180 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^2} \, dx\\ &=2 e^{2 x}+\frac {e^{4 x}}{2}+e^{7 x}-7 e^x x^2+8 e^x x^3-2 e^{2 x} (1+2 x)-\frac {1}{2} e^{4 x} (1+4 x)-4 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^2} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^4} \, dx+8 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x^9}{\left (e^x-x+x^2\right )^3} \, dx+8 \int \frac {e^x x}{\left (e^x-x+x^2\right )^2} \, dx-12 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^4} \, dx+16 \int \frac {e^x x^2}{\left (e^x-x+x^2\right )^5} \, dx+16 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^5} \, dx-16 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^2} \, dx-24 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^3} \, dx-28 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^2} \, dx-36 \int \frac {e^x x^2}{e^x-x+x^2} \, dx-48 \int \frac {e^x x^3}{\left (e^x-x+x^2\right )^5} \, dx+48 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^3} \, dx-48 \int \frac {e^x x^8}{\left (e^x-x+x^2\right )^3} \, dx-60 \int \frac {e^x x^4}{e^x-x+x^2} \, dx+96 \int \frac {e^x x^3}{e^x-x+x^2} \, dx+100 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^2} \, dx-104 \int \frac {e^x x^6}{\left (e^x-x+x^2\right )^3} \, dx+104 \int \frac {e^x x^7}{\left (e^x-x+x^2\right )^3} \, dx+124 \int \frac {e^x x^4}{\left (e^x-x+x^2\right )^2} \, dx-180 \int \frac {e^x x^5}{\left (e^x-x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.24, size = 83, normalized size = 2.77 \begin {gather*} \frac {e^x \left (e^{5 x}-e^{2 x} x+2 e^{4 x} (-1+x) x-2 e^x (-1+x) x^2+e^{3 x} (-1+x)^2 x^2-x \left (2+x^2-2 x^3+x^4\right )\right )^2}{\left (e^x+(-1+x) x\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 390, normalized size = 13.00 \begin {gather*} \frac {4 \, {\left (x^{2} - x\right )} e^{\left (10 \, x\right )} + 6 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (9 \, x\right )} + 2 \, {\left (2 \, x^{6} - 6 \, x^{5} + 6 \, x^{4} - 2 \, x^{3} - x\right )} e^{\left (8 \, x\right )} + {\left (x^{8} - 4 \, x^{7} + 6 \, x^{6} - 4 \, x^{5} + x^{4} - 8 \, x^{3} + 8 \, x^{2}\right )} e^{\left (7 \, x\right )} - 4 \, {\left (3 \, x^{5} - 6 \, x^{4} + 3 \, x^{3} + x\right )} e^{\left (6 \, x\right )} - {\left (8 \, x^{7} - 24 \, x^{6} + 24 \, x^{5} - 8 \, x^{4} + 8 \, x^{3} - 9 \, x^{2}\right )} e^{\left (5 \, x\right )} - 2 \, {\left (x^{9} - 4 \, x^{8} + 6 \, x^{7} - 4 \, x^{6} + 3 \, x^{5} - 6 \, x^{4} + 4 \, x^{3}\right )} e^{\left (4 \, x\right )} + 2 \, {\left (3 \, x^{6} - 6 \, x^{5} + 3 \, x^{4} + 2 \, x^{2}\right )} e^{\left (3 \, x\right )} + 4 \, {\left (x^{8} - 3 \, x^{7} + 3 \, x^{6} - x^{5} + 2 \, x^{4} - 2 \, x^{3}\right )} e^{\left (2 \, x\right )} + {\left (x^{10} - 4 \, x^{9} + 6 \, x^{8} - 4 \, x^{7} + 5 \, x^{6} - 8 \, x^{5} + 4 \, x^{4} + 4 \, x^{2}\right )} e^{x} + e^{\left (11 \, x\right )}}{x^{8} - 4 \, x^{7} + 6 \, x^{6} - 4 \, x^{5} + x^{4} + 4 \, {\left (x^{2} - x\right )} e^{\left (3 \, x\right )} + 6 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{6} - 3 \, x^{5} + 3 \, x^{4} - x^{3}\right )} e^{x} + e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.79, size = 548, normalized size = 18.27 \begin {gather*} \frac {x^{10} e^{x} - 2 \, x^{9} e^{\left (4 \, x\right )} - 4 \, x^{9} e^{x} + x^{8} e^{\left (7 \, x\right )} + 8 \, x^{8} e^{\left (4 \, x\right )} + 4 \, x^{8} e^{\left (2 \, x\right )} + 6 \, x^{8} e^{x} - 4 \, x^{7} e^{\left (7 \, x\right )} - 8 \, x^{7} e^{\left (5 \, x\right )} - 12 \, x^{7} e^{\left (4 \, x\right )} - 12 \, x^{7} e^{\left (2 \, x\right )} - 4 \, x^{7} e^{x} + 4 \, x^{6} e^{\left (8 \, x\right )} + 6 \, x^{6} e^{\left (7 \, x\right )} + 24 \, x^{6} e^{\left (5 \, x\right )} + 8 \, x^{6} e^{\left (4 \, x\right )} + 6 \, x^{6} e^{\left (3 \, x\right )} + 12 \, x^{6} e^{\left (2 \, x\right )} + 5 \, x^{6} e^{x} - 12 \, x^{5} e^{\left (8 \, x\right )} - 4 \, x^{5} e^{\left (7 \, x\right )} - 12 \, x^{5} e^{\left (6 \, x\right )} - 24 \, x^{5} e^{\left (5 \, x\right )} - 6 \, x^{5} e^{\left (4 \, x\right )} - 12 \, x^{5} e^{\left (3 \, x\right )} - 4 \, x^{5} e^{\left (2 \, x\right )} - 8 \, x^{5} e^{x} + 6 \, x^{4} e^{\left (9 \, x\right )} + 12 \, x^{4} e^{\left (8 \, x\right )} + x^{4} e^{\left (7 \, x\right )} + 24 \, x^{4} e^{\left (6 \, x\right )} + 8 \, x^{4} e^{\left (5 \, x\right )} + 12 \, x^{4} e^{\left (4 \, x\right )} + 6 \, x^{4} e^{\left (3 \, x\right )} + 8 \, x^{4} e^{\left (2 \, x\right )} + 4 \, x^{4} e^{x} - 12 \, x^{3} e^{\left (9 \, x\right )} - 4 \, x^{3} e^{\left (8 \, x\right )} - 8 \, x^{3} e^{\left (7 \, x\right )} - 12 \, x^{3} e^{\left (6 \, x\right )} - 8 \, x^{3} e^{\left (5 \, x\right )} - 8 \, x^{3} e^{\left (4 \, x\right )} - 8 \, x^{3} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{\left (10 \, x\right )} + 6 \, x^{2} e^{\left (9 \, x\right )} + 8 \, x^{2} e^{\left (7 \, x\right )} + 9 \, x^{2} e^{\left (5 \, x\right )} + 4 \, x^{2} e^{\left (3 \, x\right )} + 4 \, x^{2} e^{x} - 4 \, x e^{\left (10 \, x\right )} - 2 \, x e^{\left (8 \, x\right )} - 4 \, x e^{\left (6 \, x\right )} + e^{\left (11 \, x\right )}}{x^{8} - 4 \, x^{7} + 4 \, x^{6} e^{x} + 6 \, x^{6} - 12 \, x^{5} e^{x} - 4 \, x^{5} + 6 \, x^{4} e^{\left (2 \, x\right )} + 12 \, x^{4} e^{x} + x^{4} - 12 \, x^{3} e^{\left (2 \, x\right )} - 4 \, x^{3} e^{x} + 4 \, x^{2} e^{\left (3 \, x\right )} + 6 \, x^{2} e^{\left (2 \, x\right )} - 4 \, x e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 259, normalized size = 8.63
method | result | size |
risch | \({\mathrm e}^{7 x}-12 x^{5}-2 x \,{\mathrm e}^{4 x}+24 x^{4}-12 x^{3}-4 x \,{\mathrm e}^{2 x}+\left (8 x^{3}-7 x^{2}\right ) {\mathrm e}^{x}+\frac {4 \left (-50 x^{8} {\mathrm e}^{x}+12 x^{3} {\mathrm e}^{3 x}+100 x^{7} {\mathrm e}^{x}+10 x^{9} {\mathrm e}^{x}+50 x^{5} {\mathrm e}^{x}+3 x^{11}+{\mathrm e}^{3 x}+45 x^{7}-60 x^{8}-18 x^{10}+45 x^{9}-18 x^{6}+3 x^{5}+{\mathrm e}^{x}-4 x^{2} {\mathrm e}^{3 x}+11 \,{\mathrm e}^{2 x} x^{3}+66 x^{5} {\mathrm e}^{2 x}+2 \,{\mathrm e}^{2 x} x^{2}-2 x \,{\mathrm e}^{2 x}-100 x^{6} {\mathrm e}^{x}-9 \,{\mathrm e}^{x} x^{4}+{\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x^{3}-44 x^{6} {\mathrm e}^{2 x}-44 \,{\mathrm e}^{2 x} x^{4}+11 \,{\mathrm e}^{2 x} x^{7}+4 \,{\mathrm e}^{3 x} x^{5}-12 \,{\mathrm e}^{3 x} x^{4}\right ) x^{2}}{\left (x^{2}+{\mathrm e}^{x}-x \right )^{4}}\) | \(259\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 390, normalized size = 13.00 \begin {gather*} \frac {4 \, {\left (x^{2} - x\right )} e^{\left (10 \, x\right )} + 6 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (9 \, x\right )} + 2 \, {\left (2 \, x^{6} - 6 \, x^{5} + 6 \, x^{4} - 2 \, x^{3} - x\right )} e^{\left (8 \, x\right )} + {\left (x^{8} - 4 \, x^{7} + 6 \, x^{6} - 4 \, x^{5} + x^{4} - 8 \, x^{3} + 8 \, x^{2}\right )} e^{\left (7 \, x\right )} - 4 \, {\left (3 \, x^{5} - 6 \, x^{4} + 3 \, x^{3} + x\right )} e^{\left (6 \, x\right )} - {\left (8 \, x^{7} - 24 \, x^{6} + 24 \, x^{5} - 8 \, x^{4} + 8 \, x^{3} - 9 \, x^{2}\right )} e^{\left (5 \, x\right )} - 2 \, {\left (x^{9} - 4 \, x^{8} + 6 \, x^{7} - 4 \, x^{6} + 3 \, x^{5} - 6 \, x^{4} + 4 \, x^{3}\right )} e^{\left (4 \, x\right )} + 2 \, {\left (3 \, x^{6} - 6 \, x^{5} + 3 \, x^{4} + 2 \, x^{2}\right )} e^{\left (3 \, x\right )} + 4 \, {\left (x^{8} - 3 \, x^{7} + 3 \, x^{6} - x^{5} + 2 \, x^{4} - 2 \, x^{3}\right )} e^{\left (2 \, x\right )} + {\left (x^{10} - 4 \, x^{9} + 6 \, x^{8} - 4 \, x^{7} + 5 \, x^{6} - 8 \, x^{5} + 4 \, x^{4} + 4 \, x^{2}\right )} e^{x} + e^{\left (11 \, x\right )}}{x^{8} - 4 \, x^{7} + 6 \, x^{6} - 4 \, x^{5} + x^{4} + 4 \, {\left (x^{2} - x\right )} e^{\left (3 \, x\right )} + 6 \, {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{6} - 3 \, x^{5} + 3 \, x^{4} - x^{3}\right )} e^{x} + e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{6\,x}\,\left (7\,{\mathrm {e}}^{6\,x}-{\mathrm {e}}^{5\,x}\,\left (35\,x-35\,x^2\right )+{\mathrm {e}}^{2\,x}\,\left (35\,x^8-140\,x^7+210\,x^6-140\,x^5+35\,x^4\right )+{\mathrm {e}}^{4\,x}\,\left (70\,x^4-140\,x^3+70\,x^2\right )-{\mathrm {e}}^{3\,x}\,\left (-70\,x^6+210\,x^5-210\,x^4+70\,x^3\right )-{\mathrm {e}}^x\,\left (-7\,x^{10}+35\,x^9-70\,x^8+70\,x^7-35\,x^6+7\,x^5\right )\right )+{\mathrm {e}}^{3\,x}\,\left ({\mathrm {e}}^{3\,x}\,\left (-80\,x^7+220\,x^6-180\,x^5+20\,x^4-12\,x^3+36\,x^2+4\,x\right )+{\mathrm {e}}^{5\,x}\,\left (-40\,x^3+30\,x^2+10\,x\right )-{\mathrm {e}}^x\,\left (8\,x^{11}-38\,x^{10}+70\,x^9-60\,x^8+36\,x^7-58\,x^6+74\,x^5-36\,x^4+4\,x^3\right )-{\mathrm {e}}^{4\,x}\,\left (80\,x^5-140\,x^4+40\,x^3+20\,x^2+8\,x+4\right )+{\mathrm {e}}^{2\,x}\,\left (-40\,x^9+150\,x^8-200\,x^7+100\,x^6-40\,x^5+90\,x^4-64\,x^3+4\,x^2\right )-{\mathrm {e}}^{6\,x}\,\left (8\,x+2\right )\right )+{\mathrm {e}}^x\,\left (x^{12}-3\,x^{11}+10\,x^9-11\,x^8-11\,x^7+26\,x^6-12\,x^5+4\,x^4-28\,x^3+8\,x^2\right )-{\mathrm {e}}^{3\,x}\,\left (-10\,x^8+10\,x^7+30\,x^6-50\,x^5+24\,x^4-12\,x^3+16\,x^2\right )+{\mathrm {e}}^{5\,x}\,\left (5\,x^4+5\,x^3-10\,x^2\right )+{\mathrm {e}}^{6\,x}\,\left (x^2+2\,x\right )+{\mathrm {e}}^{4\,x}\,\left (10\,x^6-30\,x^4+20\,x^3-4\,x^2+8\,x\right )+{\mathrm {e}}^{2\,x}\,\left (5\,x^{10}-10\,x^9-10\,x^8+40\,x^7-31\,x^6-6\,x^5+4\,x^4+8\,x^3-12\,x^2+8\,x\right )}{{\mathrm {e}}^{5\,x}-{\mathrm {e}}^{4\,x}\,\left (5\,x-5\,x^2\right )+{\mathrm {e}}^{3\,x}\,\left (10\,x^4-20\,x^3+10\,x^2\right )+{\mathrm {e}}^x\,\left (5\,x^8-20\,x^7+30\,x^6-20\,x^5+5\,x^4\right )-{\mathrm {e}}^{2\,x}\,\left (-10\,x^6+30\,x^5-30\,x^4+10\,x^3\right )-x^5+5\,x^6-10\,x^7+10\,x^8-5\,x^9+x^{10}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.95, size = 291, normalized size = 9.70 \begin {gather*} - 12 x^{5} + 24 x^{4} - 12 x^{3} - 2 x e^{4 x} - 4 x e^{2 x} + \left (8 x^{3} - 7 x^{2}\right ) e^{x} + e^{7 x} + \frac {12 x^{13} - 72 x^{12} + 180 x^{11} - 240 x^{10} + 180 x^{9} - 72 x^{8} + 12 x^{7} + \left (16 x^{7} - 48 x^{6} + 48 x^{5} - 16 x^{4} + 4 x^{2}\right ) e^{3 x} + \left (44 x^{9} - 176 x^{8} + 264 x^{7} - 176 x^{6} + 44 x^{5} + 8 x^{4} - 8 x^{3}\right ) e^{2 x} + \left (40 x^{11} - 200 x^{10} + 400 x^{9} - 400 x^{8} + 200 x^{7} - 36 x^{6} - 8 x^{5} + 4 x^{4} + 4 x^{2}\right ) e^{x}}{x^{8} - 4 x^{7} + 6 x^{6} - 4 x^{5} + x^{4} + \left (4 x^{2} - 4 x\right ) e^{3 x} + \left (6 x^{4} - 12 x^{3} + 6 x^{2}\right ) e^{2 x} + \left (4 x^{6} - 12 x^{5} + 12 x^{4} - 4 x^{3}\right ) e^{x} + e^{4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________