Optimal. Leaf size=26 \[ \left (e^x+\left (x-x^2\right )^2\right ) \log \left (e^2+\frac {1}{2} (-5+x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.90, antiderivative size = 1057, normalized size of antiderivative = 40.65, number of steps used = 42, number of rules used = 13, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {6742, 43, 2411, 12, 2346, 2301, 2295, 2418, 2389, 2395, 2390, 2334, 2288} \begin {gather*} -\frac {1}{4} \left (-x-2 e^2+5\right )^4+\frac {16}{9} \left (5-2 e^2\right ) \left (-x-2 e^2+5\right )^3-\frac {26}{9} \left (-x-2 e^2+5\right )^3-6 \left (5-2 e^2\right )^2 \left (-x-2 e^2+5\right )^2+\frac {39}{2} \left (5-2 e^2\right ) \left (-x-2 e^2+5\right )^2-8 \left (-x-2 e^2+5\right )^2-8 e^2 \left (18-17 e^2+4 e^4\right ) \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right ) \left (-x-2 e^2+5\right )+10 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right ) \left (-x-2 e^2+5\right )+\frac {x^4}{4}+\frac {1}{3} \left (5-2 e^2\right ) x^3-\frac {8 e^2 x^3}{9}-\frac {2 x^3}{3}+\frac {1}{2} \left (5-2 e^2\right )^2 x^2-\frac {4}{3} e^2 \left (5-2 e^2\right ) x^2-\left (5-2 e^2\right ) x^2-e^2 \left (7-4 e^2\right ) x^2+\frac {x^2}{2}+4 e^2 \left (90-121 e^2+54 e^4-8 e^6\right ) \log ^2\left (\frac {1}{2} \left (x+2 e^2-5\right )\right )-2 \left (5-2 e^2\right )^4 \log ^2\left (\frac {1}{2} \left (x+2 e^2-5\right )\right )+13 \left (5-2 e^2\right )^3 \log ^2\left (\frac {1}{2} \left (x+2 e^2-5\right )\right )-16 \left (5-2 e^2\right )^2 \log ^2\left (\frac {1}{2} \left (x+2 e^2-5\right )\right )-5 \left (5-2 e^2\right ) \log ^2\left (\frac {1}{2} \left (x+2 e^2-5\right )\right )-8 e^2 \left (18-17 e^2+4 e^4\right ) x-15 \left (5-2 e^2\right )^3 x-\frac {8}{3} e^2 \left (5-2 e^2\right )^2 x+76 \left (5-2 e^2\right )^2 x-2 e^2 \left (7-4 e^2\right ) \left (5-2 e^2\right ) x-63 \left (5-2 e^2\right ) x+10 x+\left (5-2 e^2\right )^4 \log \left (-x-2 e^2+5\right )-\frac {8}{3} e^2 \left (5-2 e^2\right )^3 \log \left (-x-2 e^2+5\right )-2 \left (5-2 e^2\right )^3 \log \left (-x-2 e^2+5\right )-2 e^2 \left (7-4 e^2\right ) \left (5-2 e^2\right )^2 \log \left (-x-2 e^2+5\right )+\left (5-2 e^2\right )^2 \log \left (-x-2 e^2+5\right )+\frac {8}{3} e^2 x^3 \log \left (\frac {x}{2}+\frac {1}{2} \left (-5+2 e^2\right )\right )+2 e^2 \left (7-4 e^2\right ) x^2 \log \left (\frac {x}{2}+\frac {1}{2} \left (-5+2 e^2\right )\right )-16 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right ) \left (-\left (-x-2 e^2+5\right )^2+4 \left (5-2 e^2\right ) \left (-x-2 e^2+5\right )-2 \left (5-2 e^2\right )^2 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right )\right )+\frac {13}{3} \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right ) \left (2 \left (-x-2 e^2+5\right )^3-9 \left (5-2 e^2\right ) \left (-x-2 e^2+5\right )^2+18 \left (5-2 e^2\right )^2 \left (-x-2 e^2+5\right )-6 \left (5-2 e^2\right )^3 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right )\right )-\frac {1}{3} \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right ) \left (-3 \left (-x-2 e^2+5\right )^4+16 \left (5-2 e^2\right ) \left (-x-2 e^2+5\right )^3-36 \left (5-2 e^2\right )^2 \left (-x-2 e^2+5\right )^2+48 \left (5-2 e^2\right )^3 \left (-x-2 e^2+5\right )-12 \left (5-2 e^2\right )^4 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right )\right )-\frac {e^x \left (x \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right )+2 e^2 \log \left (\frac {1}{2} \left (x+2 e^2-5\right )\right )-5 \log \left (x+2 e^2-5\right )+\log (32)\right )}{-x-2 e^2+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 2288
Rule 2295
Rule 2301
Rule 2334
Rule 2346
Rule 2389
Rule 2390
Rule 2395
Rule 2411
Rule 2418
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {x^2}{-5+2 e^2+x}-\frac {2 x^3}{-5+2 e^2+x}+\frac {x^4}{-5+2 e^2+x}+\frac {10 x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x}+\frac {4 e^2 (1-2 x) (-1+x) x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x}+\frac {26 x^3 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x}+\frac {32 x^2 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x}+\frac {4 x^4 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x}+\frac {e^x \left (1+\log (32)+2 e^2 \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )+x \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )-5 \log \left (-5+2 e^2+x\right )\right )}{-5+2 e^2+x}\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{-5+2 e^2+x} \, dx\right )+4 \int \frac {x^4 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x} \, dx+10 \int \frac {x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x} \, dx+26 \int \frac {x^3 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x} \, dx+32 \int \frac {x^2 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x} \, dx+\left (4 e^2\right ) \int \frac {(1-2 x) (-1+x) x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{5-2 e^2-x} \, dx+\int \frac {x^2}{-5+2 e^2+x} \, dx+\int \frac {x^4}{-5+2 e^2+x} \, dx+\int \frac {e^x \left (1+\log (32)+2 e^2 \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )+x \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )-5 \log \left (-5+2 e^2+x\right )\right )}{-5+2 e^2+x} \, dx\\ &=-\frac {e^x \left (\log (32)+2 e^2 \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )+x \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )-5 \log \left (-5+2 e^2+x\right )\right )}{5-2 e^2-x}-2 \int \left (\left (-5+2 e^2\right )^2-\left (-5+2 e^2\right ) x+x^2-\frac {\left (-5+2 e^2\right )^3}{-5+2 e^2+x}\right ) \, dx+8 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right )^4 \log (x)}{2 x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+20 \operatorname {Subst}\left (\int -\frac {\left (5-2 e^2+2 x\right ) \log (x)}{2 x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+52 \operatorname {Subst}\left (\int -\frac {\left (5-2 e^2+2 x\right )^3 \log (x)}{2 x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+64 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right )^2 \log (x)}{2 x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+\left (4 e^2\right ) \int \left (2 \left (18-17 e^2+4 e^4\right ) \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )-\left (-7+4 e^2\right ) x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+2 x^2 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )-\frac {2 \left (-90+121 e^2-54 e^4+8 e^6\right ) \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x}\right ) \, dx+\int \left (5 \left (1-\frac {2 e^2}{5}\right )+x+\frac {\left (-5+2 e^2\right )^2}{-5+2 e^2+x}\right ) \, dx+\int \left (-\left (-5+2 e^2\right )^3+\left (-5+2 e^2\right )^2 x-\left (-5+2 e^2\right ) x^2+x^3+\frac {\left (-5+2 e^2\right )^4}{-5+2 e^2+x}\right ) \, dx\\ &=\left (5-2 e^2\right ) x-2 \left (5-2 e^2\right )^2 x+\left (5-2 e^2\right )^3 x+\frac {x^2}{2}-\left (5-2 e^2\right ) x^2+\frac {1}{2} \left (5-2 e^2\right )^2 x^2-\frac {2 x^3}{3}+\frac {1}{3} \left (5-2 e^2\right ) x^3+\frac {x^4}{4}+\left (5-2 e^2\right )^2 \log \left (5-2 e^2-x\right )-2 \left (5-2 e^2\right )^3 \log \left (5-2 e^2-x\right )+\left (5-2 e^2\right )^4 \log \left (5-2 e^2-x\right )-\frac {e^x \left (\log (32)+2 e^2 \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )+x \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )-5 \log \left (-5+2 e^2+x\right )\right )}{5-2 e^2-x}+4 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right )^4 \log (x)}{x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )-10 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right ) \log (x)}{x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )-26 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right )^3 \log (x)}{x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+32 \operatorname {Subst}\left (\int \frac {\left (5-2 e^2+2 x\right )^2 \log (x)}{x} \, dx,x,\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )+\left (8 e^2\right ) \int x^2 \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right ) \, dx+\left (4 e^2 \left (7-4 e^2\right )\right ) \int x \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right ) \, dx+\left (8 e^2 \left (18-17 e^2+4 e^4\right )\right ) \int \log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right ) \, dx+\left (8 e^2 \left (90-121 e^2+54 e^4-8 e^6\right )\right ) \int \frac {\log \left (\frac {1}{2} \left (-5+2 e^2\right )+\frac {x}{2}\right )}{-5+2 e^2+x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.51, size = 82, normalized size = 3.15 \begin {gather*} \frac {\left (2 e^{2+x}+e^x x+2 e^2 (-1+x)^2 x^2+(-5+x) (-1+x)^2 x^2\right ) \log \left (\frac {1}{2} \left (-5+2 e^2+x\right )\right )+e^x \left (\log (32)-5 \log \left (-5+2 e^2+x\right )\right )}{-5+2 e^2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.33, size = 23, normalized size = 0.88 \begin {gather*} {\left (x^{4} - 2 \, x^{3} + x^{2} + e^{x}\right )} \log \left (\frac {1}{2} \, x + e^{2} - \frac {5}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 49, normalized size = 1.88 \begin {gather*} x^{4} \log \left (\frac {1}{2} \, x + e^{2} - \frac {5}{2}\right ) - 2 \, x^{3} \log \left (\frac {1}{2} \, x + e^{2} - \frac {5}{2}\right ) + x^{2} \log \left (\frac {1}{2} \, x + e^{2} - \frac {5}{2}\right ) + e^{x} \log \left (\frac {1}{2} \, x + e^{2} - \frac {5}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 24, normalized size = 0.92
method | result | size |
risch | \(\left (x^{4}-2 x^{3}+x^{2}+{\mathrm e}^{x}\right ) \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )\) | \(24\) |
norman | \({\mathrm e}^{x} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+\ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{2}+\ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{4}-2 \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{3}\) | \(50\) |
default | \(\frac {100 \,{\mathrm e}^{8}}{3}-304 \,{\mathrm e}^{6}+1036 \,{\mathrm e}^{4}-\frac {4690 \,{\mathrm e}^{2}}{3}+720 \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+144 \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )^{3} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+16 \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )^{4} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+484 \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )^{2}+720 \,{\mathrm e}^{2} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+{\mathrm e}^{x} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+160 \,{\mathrm e}^{6} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )-488 \,{\mathrm e}^{4} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )-64 \,{\mathrm e}^{6} \ln \left (2 \,{\mathrm e}^{2}+x -5\right )-32 \,{\mathrm e}^{8} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right )+16 \left ({\mathrm e}^{4}\right )^{2} \ln \left (2 \,{\mathrm e}^{2}+x -5\right )-32 \,{\mathrm e}^{6} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x -24 \,{\mathrm e}^{4} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{2}+24 \,{\mathrm e}^{4} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x -720 \ln \left (2 \,{\mathrm e}^{2}+x -5\right ) {\mathrm e}^{2}+484 \,{\mathrm e}^{4} \ln \left (2 \,{\mathrm e}^{2}+x -5\right )-80 \,{\mathrm e}^{2} {\mathrm e}^{4} \ln \left (2 \,{\mathrm e}^{2}+x -5\right )+\frac {3525}{4}-8 \,{\mathrm e}^{2} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{3}+12 \,{\mathrm e}^{2} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x^{2}-4 \,{\mathrm e}^{2} \ln \left ({\mathrm e}^{2}+\frac {x}{2}-\frac {5}{2}\right ) x +400 \ln \left (2 \,{\mathrm e}^{2}+x -5\right )\) | \(346\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 23, normalized size = 0.88 \begin {gather*} \ln \left (\frac {x}{2}+{\mathrm {e}}^2-\frac {5}{2}\right )\,\left ({\mathrm {e}}^x+x^2-2\,x^3+x^4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 37, normalized size = 1.42 \begin {gather*} \left (x^{4} - 2 x^{3} + x^{2}\right ) \log {\left (\frac {x}{2} - \frac {5}{2} + e^{2} \right )} + e^{x} \log {\left (\frac {x}{2} - \frac {5}{2} + e^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________