Optimal. Leaf size=25 \[ \frac {5-x+\log (3)}{1+e^{e^x+x+x^4}-x} \]
________________________________________________________________________________________
Rubi [F] time = 4.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+\log (3)+e^{e^x+x+x^4} \left (-6+x-20 x^3+4 x^4+e^x (-5+x-\log (3))+\left (-1-4 x^3\right ) \log (3)\right )}{1+e^{2 e^x+2 x+2 x^4}+e^{e^x+x+x^4} (2-2 x)-2 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (1+\frac {\log (3)}{4}\right )+e^{e^x+x+x^4} \left (-6+x-20 x^3+4 x^4+e^x (-5+x-\log (3))+\left (-1-4 x^3\right ) \log (3)\right )}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx\\ &=\int \left (\frac {x+e^x x+4 x^4-6 \left (1+\frac {\log (3)}{6}\right )-5 e^x \left (1+\frac {\log (3)}{5}\right )-20 x^3 \left (1+\frac {\log (3)}{5}\right )}{1+e^{e^x+x+x^4}-x}+\frac {\left (-2-e^x+x+e^x x-4 x^3+4 x^4\right ) (-5+x-\log (3))}{\left (1+e^{e^x+x+x^4}-x\right )^2}\right ) \, dx\\ &=\int \frac {x+e^x x+4 x^4-6 \left (1+\frac {\log (3)}{6}\right )-5 e^x \left (1+\frac {\log (3)}{5}\right )-20 x^3 \left (1+\frac {\log (3)}{5}\right )}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {\left (-2-e^x+x+e^x x-4 x^3+4 x^4\right ) (-5+x-\log (3))}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx\\ &=\int \left (\frac {x \left (-2-e^x+x+e^x x-4 x^3+4 x^4\right )}{\left (1+e^{e^x+x+x^4}-x\right )^2}-\frac {5 \left (-2-e^x+x+e^x x-4 x^3+4 x^4\right ) \left (1+\frac {\log (3)}{5}\right )}{\left (1+e^{e^x+x+x^4}-x\right )^2}\right ) \, dx+\int \left (\frac {x}{1+e^{e^x+x+x^4}-x}+\frac {e^x x}{1+e^{e^x+x+x^4}-x}+\frac {4 x^4}{1+e^{e^x+x+x^4}-x}-\frac {e^x (5+\log (3))}{1+e^{e^x+x+x^4}-x}-\frac {4 x^3 (5+\log (3))}{1+e^{e^x+x+x^4}-x}-\frac {6+\log (3)}{1+e^{e^x+x+x^4}-x}\right ) \, dx\\ &=4 \int \frac {x^4}{1+e^{e^x+x+x^4}-x} \, dx+(-6-\log (3)) \int \frac {1}{1+e^{e^x+x+x^4}-x} \, dx+(-5-\log (3)) \int \frac {e^x}{1+e^{e^x+x+x^4}-x} \, dx-(5+\log (3)) \int \frac {-2-e^x+x+e^x x-4 x^3+4 x^4}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx-(4 (5+\log (3))) \int \frac {x^3}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {x}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {e^x x}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {x \left (-2-e^x+x+e^x x-4 x^3+4 x^4\right )}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx\\ &=4 \int \frac {x^4}{1+e^{e^x+x+x^4}-x} \, dx+(-6-\log (3)) \int \frac {1}{1+e^{e^x+x+x^4}-x} \, dx+(-5-\log (3)) \int \frac {e^x}{1+e^{e^x+x+x^4}-x} \, dx-(5+\log (3)) \int \left (-\frac {2}{\left (1+e^{e^x+x+x^4}-x\right )^2}-\frac {e^x}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {x}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {e^x x}{\left (1+e^{e^x+x+x^4}-x\right )^2}-\frac {4 x^3}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {4 x^4}{\left (1+e^{e^x+x+x^4}-x\right )^2}\right ) \, dx-(4 (5+\log (3))) \int \frac {x^3}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {x}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {e^x x}{1+e^{e^x+x+x^4}-x} \, dx+\int \left (-\frac {2 x}{\left (1+e^{e^x+x+x^4}-x\right )^2}-\frac {e^x x}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {x^2}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {e^x x^2}{\left (1+e^{e^x+x+x^4}-x\right )^2}-\frac {4 x^4}{\left (1+e^{e^x+x+x^4}-x\right )^2}+\frac {4 x^5}{\left (1+e^{e^x+x+x^4}-x\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx\right )-4 \int \frac {x^4}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+4 \int \frac {x^4}{1+e^{e^x+x+x^4}-x} \, dx+4 \int \frac {x^5}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+(-6-\log (3)) \int \frac {1}{1+e^{e^x+x+x^4}-x} \, dx-(-5-\log (3)) \int \frac {e^x}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+(-5-\log (3)) \int \frac {e^x}{1+e^{e^x+x+x^4}-x} \, dx-(5+\log (3)) \int \frac {x}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx-(5+\log (3)) \int \frac {e^x x}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+(2 (5+\log (3))) \int \frac {1}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+(4 (5+\log (3))) \int \frac {x^3}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx-(4 (5+\log (3))) \int \frac {x^3}{1+e^{e^x+x+x^4}-x} \, dx-(4 (5+\log (3))) \int \frac {x^4}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx-\int \frac {e^x x}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+\int \frac {x}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {e^x x}{1+e^{e^x+x+x^4}-x} \, dx+\int \frac {x^2}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx+\int \frac {e^x x^2}{\left (1+e^{e^x+x+x^4}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.18, size = 25, normalized size = 1.00 \begin {gather*} \frac {5-x+\log (3)}{1+e^{e^x+x+x^4}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 23, normalized size = 0.92 \begin {gather*} \frac {x - \log \relax (3) - 5}{x - e^{\left (x^{4} + x + e^{x}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 0.92 \begin {gather*} \frac {x - \log \relax (3) - 5}{x - e^{\left (x^{4} + x + e^{x}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 1.00
method | result | size |
risch | \(-\frac {\ln \relax (3)-x +5}{x -{\mathrm e}^{{\mathrm e}^{x}+x^{4}+x}-1}\) | \(25\) |
norman | \(\frac {{\mathrm e}^{{\mathrm e}^{x}+x^{4}+x}-4-\ln \relax (3)}{x -{\mathrm e}^{{\mathrm e}^{x}+x^{4}+x}-1}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 23, normalized size = 0.92 \begin {gather*} \frac {x - \log \relax (3) - 5}{x - e^{\left (x^{4} + x + e^{x}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.50, size = 113, normalized size = 4.52 \begin {gather*} -\frac {2\,\ln \relax (3)-7\,x+5\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^x-x\,\ln \relax (3)+4\,x^3\,\ln \relax (3)-4\,x^4\,\ln \relax (3)+{\mathrm {e}}^x\,\ln \relax (3)-6\,x\,{\mathrm {e}}^x+x^2+20\,x^3-24\,x^4+4\,x^5-x\,{\mathrm {e}}^x\,\ln \relax (3)+10}{\left ({\mathrm {e}}^{x+{\mathrm {e}}^x+x^4}-x+1\right )\,\left (x-{\mathrm {e}}^x+x\,{\mathrm {e}}^x-4\,x^3+4\,x^4-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 19, normalized size = 0.76 \begin {gather*} \frac {- x + \log {\relax (3 )} + 5}{- x + e^{x^{4} + x + e^{x}} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________