Optimal. Leaf size=32 \[ 5+\frac {e}{-3-\frac {x^2}{(-5+2 x)^2}+\log \left (\frac {(1-x)^2}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e \left (-1250+2000 x-1250 x^2+390 x^3-52 x^4\right )}{-5625 x+14625 x^2-14550 x^3+7110 x^4-1729 x^5+169 x^6+\left (3750 x-9750 x^2+9650 x^3-4650 x^4+1104 x^5-104 x^6\right ) \log \left (\frac {1-2 x+x^2}{x^2}\right )+\left (-625 x+1625 x^2-1600 x^3+760 x^4-176 x^5+16 x^6\right ) \log ^2\left (\frac {1-2 x+x^2}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e \int \frac {-1250+2000 x-1250 x^2+390 x^3-52 x^4}{-5625 x+14625 x^2-14550 x^3+7110 x^4-1729 x^5+169 x^6+\left (3750 x-9750 x^2+9650 x^3-4650 x^4+1104 x^5-104 x^6\right ) \log \left (\frac {1-2 x+x^2}{x^2}\right )+\left (-625 x+1625 x^2-1600 x^3+760 x^4-176 x^5+16 x^6\right ) \log ^2\left (\frac {1-2 x+x^2}{x^2}\right )} \, dx\\ &=e \int \frac {2 \left (625-1000 x+625 x^2-195 x^3+26 x^4\right )}{(1-x) x \left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\\ &=(2 e) \int \frac {625-1000 x+625 x^2-195 x^3+26 x^4}{(1-x) x \left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\\ &=(2 e) \int \left (-\frac {456}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2}-\frac {81}{(-1+x) \left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2}+\frac {625}{x \left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2}+\frac {169 x}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2}-\frac {26 x^2}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2}\right ) \, dx\\ &=-\left ((52 e) \int \frac {x^2}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\right )-(162 e) \int \frac {1}{(-1+x) \left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx+(338 e) \int \frac {x}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx-(912 e) \int \frac {1}{\left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx+(1250 e) \int \frac {1}{x \left (-75+60 x-13 x^2+25 \log \left (\frac {(-1+x)^2}{x^2}\right )-20 x \log \left (\frac {(-1+x)^2}{x^2}\right )+4 x^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\\ &=-\left ((52 e) \int \frac {x^2}{\left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\right )-(162 e) \int \frac {1}{(-1+x) \left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx+(338 e) \int \frac {x}{\left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx-(912 e) \int \frac {1}{\left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx+(1250 e) \int \frac {1}{x \left (75-60 x+13 x^2-(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.97, size = 39, normalized size = 1.22 \begin {gather*} \frac {e (5-2 x)^2}{-75+60 x-13 x^2+(5-2 x)^2 \log \left (\frac {(-1+x)^2}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 51, normalized size = 1.59 \begin {gather*} -\frac {{\left (4 \, x^{2} - 20 \, x + 25\right )} e}{13 \, x^{2} - {\left (4 \, x^{2} - 20 \, x + 25\right )} \log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) - 60 \, x + 75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.60, size = 74, normalized size = 2.31 \begin {gather*} \frac {{\left (4 \, x^{2} - 20 \, x + 25\right )} e}{4 \, x^{2} \log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) - 13 \, x^{2} - 20 \, x \log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) + 60 \, x + 25 \, \log \left (\frac {x^{2} - 2 \, x + 1}{x^{2}}\right ) - 75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.20, size = 72, normalized size = 2.25
method | result | size |
risch | \(\frac {{\mathrm e} \left (2 x -5\right )^{2}}{4 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right ) x^{2}-20 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right ) x -13 x^{2}+25 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right )+60 x -75}\) | \(72\) |
norman | \(\frac {-20 x \,{\mathrm e}+4 x^{2} {\mathrm e}+25 \,{\mathrm e}}{4 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right ) x^{2}-20 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right ) x -13 x^{2}+25 \ln \left (\frac {x^{2}-2 x +1}{x^{2}}\right )+60 x -75}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 56, normalized size = 1.75 \begin {gather*} -\frac {{\left (4 \, x^{2} - 20 \, x + 25\right )} e}{13 \, x^{2} - 2 \, {\left (4 \, x^{2} - 20 \, x + 25\right )} \log \left (x - 1\right ) + 2 \, {\left (4 \, x^{2} - 20 \, x + 25\right )} \log \relax (x) - 60 \, x + 75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\mathrm {e}\,\left (52\,x^4-390\,x^3+1250\,x^2-2000\,x+1250\right )}{5625\,x-\ln \left (\frac {x^2-2\,x+1}{x^2}\right )\,\left (-104\,x^6+1104\,x^5-4650\,x^4+9650\,x^3-9750\,x^2+3750\,x\right )+{\ln \left (\frac {x^2-2\,x+1}{x^2}\right )}^2\,\left (-16\,x^6+176\,x^5-760\,x^4+1600\,x^3-1625\,x^2+625\,x\right )-14625\,x^2+14550\,x^3-7110\,x^4+1729\,x^5-169\,x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 53, normalized size = 1.66 \begin {gather*} \frac {4 e x^{2} - 20 e x + 25 e}{- 13 x^{2} + 60 x + \left (4 x^{2} - 20 x + 25\right ) \log {\left (\frac {x^{2} - 2 x + 1}{x^{2}} \right )} - 75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________