Optimal. Leaf size=19 \[ -x+x \left (9+e^{3+\frac {5 x}{3}}+\log (4)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 42, normalized size of antiderivative = 2.21, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2176, 2194} \begin {gather*} -\frac {3}{5} e^{\frac {1}{3} (5 x+9)}+\frac {1}{5} e^{\frac {1}{3} (5 x+9)} (5 x+3)+x (8+\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (24+e^{\frac {1}{3} (9+5 x)} (3+5 x)+3 \log (4)\right ) \, dx\\ &=x (8+\log (4))+\frac {1}{3} \int e^{\frac {1}{3} (9+5 x)} (3+5 x) \, dx\\ &=\frac {1}{5} e^{\frac {1}{3} (9+5 x)} (3+5 x)+x (8+\log (4))-\int e^{\frac {1}{3} (9+5 x)} \, dx\\ &=-\frac {3}{5} e^{\frac {1}{3} (9+5 x)}+\frac {1}{5} e^{\frac {1}{3} (9+5 x)} (3+5 x)+x (8+\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.26 \begin {gather*} \frac {1}{3} \left (24 x+3 e^{3+\frac {5 x}{3}} x+x \log (64)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 17, normalized size = 0.89 \begin {gather*} x e^{\left (\frac {5}{3} \, x + 3\right )} + 2 \, x \log \relax (2) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 17, normalized size = 0.89 \begin {gather*} x e^{\left (\frac {5}{3} \, x + 3\right )} + 2 \, x \log \relax (2) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
norman | \(\left (8+2 \ln \relax (2)\right ) x +{\mathrm e}^{\frac {5 x}{3}+3} x\) | \(18\) |
risch | \({\mathrm e}^{\frac {5 x}{3}+3} x +2 x \ln \relax (2)+8 x\) | \(18\) |
default | \(8 x +\frac {3 \,{\mathrm e}^{\frac {5 x}{3}+3} \left (\frac {5 x}{3}+3\right )}{5}-\frac {9 \,{\mathrm e}^{\frac {5 x}{3}+3}}{5}+2 x \ln \relax (2)\) | \(31\) |
derivativedivides | \(8 x +\frac {72}{5}+\frac {3 \,{\mathrm e}^{\frac {5 x}{3}+3} \left (\frac {5 x}{3}+3\right )}{5}-\frac {9 \,{\mathrm e}^{\frac {5 x}{3}+3}}{5}+\frac {6 \ln \relax (2) \left (\frac {5 x}{3}+3\right )}{5}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.89 \begin {gather*} x e^{\left (\frac {5}{3} \, x + 3\right )} + 2 \, x \log \relax (2) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 17, normalized size = 0.89 \begin {gather*} x\,\left (\frac {\ln \left (64\right )}{3}+8\right )+x\,{\mathrm {e}}^{\frac {5\,x}{3}+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.89 \begin {gather*} x e^{\frac {5 x}{3} + 3} + x \left (2 \log {\relax (2 )} + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________