Optimal. Leaf size=18 \[ e^{\left (16-e^4-\frac {1}{x}\right ) (4+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.47, antiderivative size = 28, normalized size of antiderivative = 1.56, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6, 6706} \begin {gather*} e^{-\frac {-16 x^2+e^4 \left (x^2+4 x\right )-63 x+4}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-4+63 x+16 x^2+e^4 \left (-4 x-x^2\right )}{x}} \left (4+\left (16-e^4\right ) x^2\right )}{x^2} \, dx\\ &=e^{-\frac {4-63 x-16 x^2+e^4 \left (4 x+x^2\right )}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 22, normalized size = 1.22 \begin {gather*} e^{63-4 e^4-\frac {4}{x}-\left (-16+e^4\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 26, normalized size = 1.44 \begin {gather*} e^{\left (\frac {16 \, x^{2} - {\left (x^{2} + 4 \, x\right )} e^{4} + 63 \, x - 4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 1.11 \begin {gather*} e^{\left (-x e^{4} + 16 \, x - \frac {4}{x} - 4 \, e^{4} + 63\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 1.06
method | result | size |
risch | \({\mathrm e}^{-\frac {\left (4+x \right ) \left (x \,{\mathrm e}^{4}-16 x +1\right )}{x}}\) | \(19\) |
gosper | \({\mathrm e}^{-\frac {x^{2} {\mathrm e}^{4}+4 x \,{\mathrm e}^{4}-16 x^{2}-63 x +4}{x}}\) | \(28\) |
norman | \({\mathrm e}^{\frac {\left (-x^{2}-4 x \right ) {\mathrm e}^{4}+16 x^{2}+63 x -4}{x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 20, normalized size = 1.11 \begin {gather*} e^{\left (-x e^{4} + 16 \, x - \frac {4}{x} - 4 \, e^{4} + 63\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 24, normalized size = 1.33 \begin {gather*} {\mathrm {e}}^{-4\,{\mathrm {e}}^4}\,{\mathrm {e}}^{16\,x}\,{\mathrm {e}}^{63}\,{\mathrm {e}}^{-\frac {4}{x}}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 24, normalized size = 1.33 \begin {gather*} e^{\frac {16 x^{2} + 63 x + \left (- x^{2} - 4 x\right ) e^{4} - 4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________