Optimal. Leaf size=27 \[ -5+\log \left (\frac {4}{-5+\frac {x \left (-x^2+5 \log (4) \log (x)\right )}{\log (x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x^2+3 x^2 \log (x)-5 \log (4) \log ^2(x)}{-x^3 \log (x)+(-5+5 x \log (4)) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2-3 x^2 \log (x)+5 \log (4) \log ^2(x)}{\log (x) \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )} \, dx\\ &=\int \left (-\frac {\log (4)}{-1+x \log (4)}+\frac {1}{x \log (x)}+\frac {5 (-1+x \log (4))}{x \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )}-\frac {x^2 (-3+2 x \log (4))}{(-1+x \log (4)) \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )}\right ) \, dx\\ &=-\log (1-x \log (4))+5 \int \frac {-1+x \log (4)}{x \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )} \, dx+\int \frac {1}{x \log (x)} \, dx-\int \frac {x^2 (-3+2 x \log (4))}{(-1+x \log (4)) \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )} \, dx\\ &=-\log (1-x \log (4))+5 \int \left (-\frac {1}{x \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )}-\frac {\log (4)}{-x^3-5 \log (x)+5 x \log (4) \log (x)}\right ) \, dx-\int \left (\frac {2 x^2}{x^3+5 \log (x)-5 x \log (4) \log (x)}+\frac {1}{\log ^2(4) \left (-x^3-5 \log (x)+5 x \log (4) \log (x)\right )}+\frac {x}{\log (4) \left (-x^3-5 \log (x)+5 x \log (4) \log (x)\right )}+\frac {1}{\log ^2(4) (-1+x \log (4)) \left (-x^3-5 \log (x)+5 x \log (4) \log (x)\right )}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-\log (1-x \log (4))+\log (\log (x))-2 \int \frac {x^2}{x^3+5 \log (x)-5 x \log (4) \log (x)} \, dx-5 \int \frac {1}{x \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right )} \, dx-\frac {\int \frac {1}{-x^3-5 \log (x)+5 x \log (4) \log (x)} \, dx}{\log ^2(4)}-\frac {\int \frac {1}{(-1+x \log (4)) \left (-x^3-5 \log (x)+5 x \log (4) \log (x)\right )} \, dx}{\log ^2(4)}-\frac {\int \frac {x}{-x^3-5 \log (x)+5 x \log (4) \log (x)} \, dx}{\log (4)}-(5 \log (4)) \int \frac {1}{-x^3-5 \log (x)+5 x \log (4) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 22, normalized size = 0.81 \begin {gather*} \log (\log (x))-\log \left (x^3+5 \log (x)-5 x \log (4) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 43, normalized size = 1.59 \begin {gather*} -\log \left (2 \, x \log \relax (2) - 1\right ) - \log \left (-\frac {x^{3} - 5 \, {\left (2 \, x \log \relax (2) - 1\right )} \log \relax (x)}{2 \, x \log \relax (2) - 1}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.89 \begin {gather*} -\log \left (-x^{3} + 10 \, x \log \relax (2) \log \relax (x) - 5 \, \log \relax (x)\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.93
method | result | size |
norman | \(-\ln \left (10 x \ln \relax (2) \ln \relax (x )-x^{3}-5 \ln \relax (x )\right )+\ln \left (\ln \relax (x )\right )\) | \(25\) |
risch | \(-\ln \left (2 x \ln \relax (2)-1\right )+\ln \left (\ln \relax (x )\right )-\ln \left (\ln \relax (x )-\frac {x^{3}}{5 \left (2 x \ln \relax (2)-1\right )}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 43, normalized size = 1.59 \begin {gather*} -\log \left (2 \, x \log \relax (2) - 1\right ) - \log \left (-\frac {x^{3} - 5 \, {\left (2 \, x \log \relax (2) - 1\right )} \log \relax (x)}{5 \, {\left (2 \, x \log \relax (2) - 1\right )}}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 22, normalized size = 0.81 \begin {gather*} \ln \left (\ln \relax (x)\right )-\ln \left (5\,\ln \relax (x)+x^3-10\,x\,\ln \relax (2)\,\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________