Optimal. Leaf size=19 \[ \frac {e^4}{\log (2) (x+\log (16) \log (3 x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {6688, 12, 6686} \begin {gather*} \frac {e^4}{\log (2) (x+\log (16) \log (3 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 (-x-\log (16))}{x \log (2) (x+\log (16) \log (3 x))^2} \, dx\\ &=\frac {e^4 \int \frac {-x-\log (16)}{x (x+\log (16) \log (3 x))^2} \, dx}{\log (2)}\\ &=\frac {e^4}{\log (2) (x+\log (16) \log (3 x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} \frac {e^4}{\log (2) (x+\log (16) \log (3 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 20, normalized size = 1.05 \begin {gather*} \frac {e^{4}}{4 \, \log \relax (2)^{2} \log \left (3 \, x\right ) + x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 20, normalized size = 1.05 \begin {gather*} \frac {e^{4}}{4 \, \log \relax (2)^{2} \log \left (3 \, x\right ) + x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 1.05
method | result | size |
risch | \(\frac {{\mathrm e}^{4}}{\ln \relax (2) \left (x +4 \ln \left (3 x \right ) \ln \relax (2)\right )}\) | \(20\) |
norman | \(\frac {{\mathrm e}^{4}}{\ln \relax (2) \left (x +4 \ln \left (3 x \right ) \ln \relax (2)\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 26, normalized size = 1.37 \begin {gather*} \frac {e^{4}}{4 \, \log \relax (3) \log \relax (2)^{2} + 4 \, \log \relax (2)^{2} \log \relax (x) + x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.36, size = 19, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^4}{\ln \relax (2)\,\left (x+4\,\ln \left (3\,x\right )\,\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 1.00 \begin {gather*} \frac {e^{4}}{x \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} \log {\left (3 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________