Optimal. Leaf size=23 \[ x \left (-6 e^{-2 x}+3 x+\frac {e^4}{\log (2)}+\log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 40, normalized size of antiderivative = 1.74, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 6742, 2176, 2194} \begin {gather*} 3 x^2-3 e^{-2 x}+3 e^{-2 x} (1-2 x)+\frac {x \left (e^4+\log (2) \log (5)\right )}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-2 x} \left ((-6+12 x) \log (2)+e^{2 x} \left (e^4+6 x \log (2)+\log (2) \log (5)\right )\right ) \, dx}{\log (2)}\\ &=\frac {\int \left (e^4+6 x \log (2)+6 e^{-2 x} (-1+2 x) \log (2)+\log (2) \log (5)\right ) \, dx}{\log (2)}\\ &=3 x^2+\frac {x \left (e^4+\log (2) \log (5)\right )}{\log (2)}+6 \int e^{-2 x} (-1+2 x) \, dx\\ &=3 e^{-2 x} (1-2 x)+3 x^2+\frac {x \left (e^4+\log (2) \log (5)\right )}{\log (2)}+6 \int e^{-2 x} \, dx\\ &=-3 e^{-2 x}+3 e^{-2 x} (1-2 x)+3 x^2+\frac {x \left (e^4+\log (2) \log (5)\right )}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 27, normalized size = 1.17 \begin {gather*} -6 e^{-2 x} x+3 x^2+\frac {e^4 x}{\log (2)}+x \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 38, normalized size = 1.65 \begin {gather*} \frac {{\left ({\left (3 \, x^{2} \log \relax (2) + x \log \relax (5) \log \relax (2) + x e^{4}\right )} e^{\left (2 \, x\right )} - 6 \, x \log \relax (2)\right )} e^{\left (-2 \, x\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 32, normalized size = 1.39 \begin {gather*} \frac {3 \, x^{2} \log \relax (2) - 6 \, x e^{\left (-2 \, x\right )} \log \relax (2) + x \log \relax (5) \log \relax (2) + x e^{4}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.13
method | result | size |
risch | \(x \ln \relax (5)+3 x^{2}-6 x \,{\mathrm e}^{-2 x}+\frac {x \,{\mathrm e}^{4}}{\ln \relax (2)}\) | \(26\) |
default | \(\frac {x \ln \relax (2) \ln \relax (5)+3 x^{2} \ln \relax (2)-6 \,{\mathrm e}^{-2 x} x \ln \relax (2)+x \,{\mathrm e}^{4}}{\ln \relax (2)}\) | \(35\) |
derivativedivides | \(\frac {2 x \ln \relax (2) \ln \relax (5)+6 x^{2} \ln \relax (2)-12 \,{\mathrm e}^{-2 x} x \ln \relax (2)+2 x \,{\mathrm e}^{4}}{2 \ln \relax (2)}\) | \(38\) |
norman | \(\left (\frac {\left (\ln \relax (2) \ln \relax (5)+{\mathrm e}^{4}\right ) x \,{\mathrm e}^{2 x}}{\ln \relax (2)}-6 x +3 \,{\mathrm e}^{2 x} x^{2}\right ) {\mathrm e}^{-2 x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 44, normalized size = 1.91 \begin {gather*} \frac {3 \, x^{2} \log \relax (2) - 3 \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} \log \relax (2) + x \log \relax (5) \log \relax (2) + x e^{4} + 3 \, e^{\left (-2 \, x\right )} \log \relax (2)}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 25, normalized size = 1.09 \begin {gather*} x\,\ln \relax (5)-6\,x\,{\mathrm {e}}^{-2\,x}+3\,x^2+\frac {x\,{\mathrm {e}}^4}{\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 27, normalized size = 1.17 \begin {gather*} 3 x^{2} + \frac {x \left (\log {\relax (2 )} \log {\relax (5 )} + e^{4}\right )}{\log {\relax (2 )}} - 6 x e^{- 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________