Optimal. Leaf size=24 \[ e^{-3+x+\frac {1}{x-\frac {4 \left (5+\frac {3}{x}+x\right )}{x}+\log (5)}} \]
________________________________________________________________________________________
Rubi [F] time = 16.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {36+48 x-7 x^2-7 x^3+x^4+\left (-3 x^2+x^3\right ) \log (5)}{-12-20 x-4 x^2+x^3+x^2 \log (5)}\right ) \left (144+456 x+476 x^2+136 x^3-25 x^4-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \log ^2(5)\right )}{144+480 x+496 x^2+136 x^3-24 x^4-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {36+48 x-7 x^2-7 x^3+x^4+\left (-3 x^2+x^3\right ) \log (5)}{-12-20 x-4 x^2+x^3+x^2 \log (5)}\right ) \left (144+456 x+476 x^2+136 x^3-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \left (-25+\log ^2(5)\right )\right )}{144+480 x+496 x^2+136 x^3-24 x^4-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \log ^2(5)} \, dx\\ &=\int \frac {\exp \left (\frac {36+48 x-7 x^2-7 x^3+x^4+\left (-3 x^2+x^3\right ) \log (5)}{-12-20 x-4 x^2+x^3+x^2 \log (5)}\right ) \left (144+456 x+476 x^2+136 x^3-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \left (-25+\log ^2(5)\right )\right )}{144+480 x+496 x^2+136 x^3-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \left (-24+\log ^2(5)\right )} \, dx\\ &=\int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \left (144+456 x+476 x^2+136 x^3-8 x^5+x^6+\left (-24 x^2-40 x^3-8 x^4+2 x^5\right ) \log (5)+x^4 \left (-25+\log ^2(5)\right )\right )}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2} \, dx\\ &=\int \left (\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right )+\frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) (4+x-\log (5))}{12+20 x-x^3+x^2 (4-\log (5))}+\frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \left (-4 x (29-5 \log (5))-12 (4-\log (5))-x^2 \left (56-8 \log (5)+\log ^2(5)\right )\right )}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2}\right ) \, dx\\ &=\int \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \, dx+\int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) (4+x-\log (5))}{12+20 x-x^3+x^2 (4-\log (5))} \, dx+\int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \left (-4 x (29-5 \log (5))-12 (4-\log (5))-x^2 \left (56-8 \log (5)+\log ^2(5)\right )\right )}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2} \, dx\\ &=\int \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \, dx+\int \left (\frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x}{12+20 x-x^3+x^2 (4-\log (5))}+\frac {4 \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \left (1-\frac {\log (5)}{4}\right )}{12+20 x-x^3+x^2 (4-\log (5))}\right ) \, dx+\int \left (\frac {12 \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) (-4+\log (5))}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2}+\frac {4 \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x (-29+5 \log (5))}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2}+\frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x^2 \left (-56+8 \log (5)-\log ^2(5)\right )}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2}\right ) \, dx\\ &=-\left ((4 (29-5 \log (5))) \int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2} \, dx\right )+(4-\log (5)) \int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right )}{12+20 x-x^3+x^2 (4-\log (5))} \, dx-(12 (4-\log (5))) \int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right )}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2} \, dx+\left (-56+8 \log (5)-\log ^2(5)\right ) \int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x^2}{\left (12+20 x-x^3+x^2 (4-\log (5))\right )^2} \, dx+\int \exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) \, dx+\int \frac {\exp \left (\frac {36+48 x+x^4-x^3 (7-\log (5))-x^2 (7+\log (125))}{-12-20 x+x^3-x^2 (4-\log (5))}\right ) x}{12+20 x-x^3+x^2 (4-\log (5))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.20, size = 79, normalized size = 3.29 \begin {gather*} 5^{-\frac {x^2 \log (5)}{-12-20 x+x^3+x^2 (-4+\log (5))}} e^{\frac {36+48 x+x^4+x^3 (-7+\log (5))+x^2 \left (-7-3 \log (5)+\log ^2(5)\right )}{-12-20 x+x^3+x^2 (-4+\log (5))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 53, normalized size = 2.21 \begin {gather*} e^{\left (\frac {x^{4} - 7 \, x^{3} - 7 \, x^{2} + {\left (x^{3} - 3 \, x^{2}\right )} \log \relax (5) + 48 \, x + 36}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 181, normalized size = 7.54 \begin {gather*} e^{\left (\frac {x^{4}}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} + \frac {x^{3} \log \relax (5)}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} - \frac {7 \, x^{3}}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} - \frac {3 \, x^{2} \log \relax (5)}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} - \frac {7 \, x^{2}}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} + \frac {48 \, x}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12} + \frac {36}{x^{3} + x^{2} \log \relax (5) - 4 \, x^{2} - 20 \, x - 12}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.37, size = 55, normalized size = 2.29
method | result | size |
gosper | \({\mathrm e}^{\frac {x^{3} \ln \relax (5)+x^{4}-3 x^{2} \ln \relax (5)-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}\) | \(55\) |
risch | \({\mathrm e}^{\frac {x^{3} \ln \relax (5)+x^{4}-3 x^{2} \ln \relax (5)-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}\) | \(55\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {\left (x^{3}-3 x^{2}\right ) \ln \relax (5)+x^{4}-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}+\left (\ln \relax (5)-4\right ) x^{2} {\mathrm e}^{\frac {\left (x^{3}-3 x^{2}\right ) \ln \relax (5)+x^{4}-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}-20 x \,{\mathrm e}^{\frac {\left (x^{3}-3 x^{2}\right ) \ln \relax (5)+x^{4}-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}-12 \,{\mathrm e}^{\frac {\left (x^{3}-3 x^{2}\right ) \ln \relax (5)+x^{4}-7 x^{3}-7 x^{2}+48 x +36}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}}}{x^{2} \ln \relax (5)+x^{3}-4 x^{2}-20 x -12}\) | \(253\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.03, size = 26, normalized size = 1.08 \begin {gather*} e^{\left (x + \frac {x^{2}}{x^{3} + x^{2} {\left (\log \relax (5) - 4\right )} - 20 \, x - 12} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.31, size = 184, normalized size = 7.67 \begin {gather*} 5^{\frac {3\,x^2-x^3}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}}\,{\mathrm {e}}^{-\frac {x^4}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}}\,{\mathrm {e}}^{\frac {7\,x^2}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}}\,{\mathrm {e}}^{\frac {7\,x^3}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}}\,{\mathrm {e}}^{-\frac {36}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}}\,{\mathrm {e}}^{-\frac {48\,x}{20\,x-x^2\,\ln \relax (5)+4\,x^2-x^3+12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.32, size = 51, normalized size = 2.12 \begin {gather*} e^{\frac {x^{4} - 7 x^{3} - 7 x^{2} + 48 x + \left (x^{3} - 3 x^{2}\right ) \log {\relax (5 )} + 36}{x^{3} - 4 x^{2} + x^{2} \log {\relax (5 )} - 20 x - 12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________