Optimal. Leaf size=29 \[ \log \left (\frac {1+x}{2 x \left (\frac {3 (3-x)}{5+e^x}+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-45-20 x-10 x^2+e^{2 x} \left (-2 x-x^2\right )+e^x \left (-9-5 x-x^2-3 x^3\right )}{45 x+55 x^2+10 x^3+e^{2 x} \left (x^2+x^3\right )+e^x \left (9 x+16 x^2+7 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-45-20 x-10 x^2+e^{2 x} \left (-2 x-x^2\right )+e^x \left (-9-5 x-x^2-3 x^3\right )}{\left (5+e^x\right ) x (1+x) \left (9+2 x+e^x x\right )} \, dx\\ &=\int \left (-\frac {5}{5+e^x}+\frac {-2-x}{x (1+x)}+\frac {9+9 x+2 x^2}{x \left (9+2 x+e^x x\right )}\right ) \, dx\\ &=-\left (5 \int \frac {1}{5+e^x} \, dx\right )+\int \frac {-2-x}{x (1+x)} \, dx+\int \frac {9+9 x+2 x^2}{x \left (9+2 x+e^x x\right )} \, dx\\ &=-\left (5 \operatorname {Subst}\left (\int \frac {1}{x (5+x)} \, dx,x,e^x\right )\right )+\int \left (-\frac {2}{x}+\frac {1}{1+x}\right ) \, dx+\int \left (\frac {9}{9+2 x+e^x x}+\frac {9}{x \left (9+2 x+e^x x\right )}+\frac {2 x}{9+2 x+e^x x}\right ) \, dx\\ &=-2 \log (x)+\log (1+x)+2 \int \frac {x}{9+2 x+e^x x} \, dx+9 \int \frac {1}{9+2 x+e^x x} \, dx+9 \int \frac {1}{x \left (9+2 x+e^x x\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int \frac {1}{5+x} \, dx,x,e^x\right )\\ &=-x+\log \left (5+e^x\right )-2 \log (x)+\log (1+x)+2 \int \frac {x}{9+2 x+e^x x} \, dx+9 \int \frac {1}{9+2 x+e^x x} \, dx+9 \int \frac {1}{x \left (9+2 x+e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 28, normalized size = 0.97 \begin {gather*} \log \left (5+e^x\right )-\log (x)+\log (1+x)-\log \left (9+2 x+e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 30, normalized size = 1.03 \begin {gather*} \log \left (x + 1\right ) - 2 \, \log \relax (x) - \log \left (\frac {x e^{x} + 2 \, x + 9}{x}\right ) + \log \left (e^{x} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.59, size = 26, normalized size = 0.90 \begin {gather*} -\log \left (x e^{x} + 2 \, x + 9\right ) + \log \left (x + 1\right ) - \log \relax (x) + \log \left (e^{x} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 0.93
method | result | size |
norman | \(-\ln \relax (x )-\ln \left ({\mathrm e}^{x} x +2 x +9\right )+\ln \left (x +1\right )+\ln \left ({\mathrm e}^{x}+5\right )\) | \(27\) |
risch | \(-2 \ln \relax (x )+\ln \left (x +1\right )+\ln \left ({\mathrm e}^{x}+5\right )-\ln \left ({\mathrm e}^{x}+\frac {2 x +9}{x}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 30, normalized size = 1.03 \begin {gather*} \log \left (x + 1\right ) - 2 \, \log \relax (x) - \log \left (\frac {x e^{x} + 2 \, x + 9}{x}\right ) + \log \left (e^{x} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 26, normalized size = 0.90 \begin {gather*} \ln \left (x+1\right )-\ln \left (2\,x+x\,{\mathrm {e}}^x+9\right )+\ln \left ({\mathrm {e}}^x+5\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 29, normalized size = 1.00 \begin {gather*} - 2 \log {\relax (x )} + \log {\left (x + 1 \right )} + \log {\left (e^{x} + 5 \right )} - \log {\left (e^{x} + \frac {4 x + 18}{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________