Optimal. Leaf size=22 \[ 3 e^{4-x} \left (5+x+2 e^{x^2} \log (\log (4))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 37, normalized size of antiderivative = 1.68, number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2176, 2194, 2236} \begin {gather*} 6 e^{x^2-x+4} \log (\log (4))+3 e^{4-x} (x+4)+3 e^{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2236
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (4)) \int e^{4-x+x^2} (-6+12 x) \, dx+\int e^{4-x} (-12-3 x) \, dx\\ &=3 e^{4-x} (4+x)+6 e^{4-x+x^2} \log (\log (4))-3 \int e^{4-x} \, dx\\ &=3 e^{4-x}+3 e^{4-x} (4+x)+6 e^{4-x+x^2} \log (\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 22, normalized size = 1.00 \begin {gather*} 3 e^{4-x} \left (5+x+2 e^{x^2} \log (\log (4))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.27 \begin {gather*} 3 \, {\left (x + 5\right )} e^{\left (-x + 4\right )} + 6 \, e^{\left (x^{2} - x + 4\right )} \log \left (2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 28, normalized size = 1.27 \begin {gather*} 3 \, {\left (x + 5\right )} e^{\left (-x + 4\right )} + 6 \, e^{\left (x^{2} - x + 4\right )} \log \left (2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 39, normalized size = 1.77
method | result | size |
default | \(-3 \,{\mathrm e}^{-x +4} \left (-x +4\right )+27 \,{\mathrm e}^{-x +4}+6 \ln \left (2 \ln \relax (2)\right ) {\mathrm e}^{x^{2}-x +4}\) | \(39\) |
norman | \(\left (6 \ln \relax (2)+6 \ln \left (\ln \relax (2)\right )\right ) {\mathrm e}^{x^{2}} {\mathrm e}^{-x +4}+3 x \,{\mathrm e}^{-x +4}+15 \,{\mathrm e}^{-x +4}\) | \(40\) |
risch | \(6 \,{\mathrm e}^{x^{2}-x +4} \ln \relax (2)+6 \,{\mathrm e}^{x^{2}-x +4} \ln \left (\ln \relax (2)\right )+\left (15+3 x \right ) {\mathrm e}^{-x +4}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 38, normalized size = 1.73 \begin {gather*} 3 \, {\left (x e^{4} + e^{4}\right )} e^{\left (-x\right )} + 6 \, e^{\left (x^{2} - x + 4\right )} \log \left (2 \, \log \relax (2)\right ) + 12 \, e^{\left (-x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 33, normalized size = 1.50 \begin {gather*} 15\,{\mathrm {e}}^{4-x}+\ln \left ({\ln \relax (4)}^6\right )\,{\mathrm {e}}^{x^2-x+4}+3\,x\,{\mathrm {e}}^{4-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.02, size = 31, normalized size = 1.41 \begin {gather*} \left (3 x + 6 e^{x^{2}} \log {\left (\log {\relax (2 )} \right )} + 6 e^{x^{2}} \log {\relax (2 )} + 15\right ) e^{4 - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________