Optimal. Leaf size=25 \[ \frac {x \log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 11.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-20 x+e^{3+2 x} \left (16 x+16 x^2+4 x^3\right )\right ) \log (x) \log \left (\frac {-5 x+e^{3+2 x} (2+x)}{2+x}\right )+\left (20 x+10 x^2+e^{3+2 x} \left (-8-8 x-2 x^2\right )+\left (-10 x-5 x^2+e^{3+2 x} \left (4+4 x+x^2\right )\right ) \log (x)\right ) \log ^2\left (\frac {-5 x+e^{3+2 x} (2+x)}{2+x}\right )}{\left (-10 x-5 x^2+e^{3+2 x} \left (4+4 x+x^2\right )\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right ) \left (\frac {4 x \left (-5+e^{3+2 x} (2+x)^2\right ) \log (x)}{(2+x) \left (-5 x+e^{3+2 x} (2+x)\right )}+(-2+\log (x)) \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )\right )}{\log ^3(x)} \, dx\\ &=\int \left (\frac {20 x \left (-1+2 x+x^2\right ) \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)}+\frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right ) \left (4 x \log (x)-2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )+\log (x) \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )\right )}{\log ^3(x)}\right ) \, dx\\ &=20 \int \frac {x \left (-1+2 x+x^2\right ) \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+\int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right ) \left (4 x \log (x)-2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )+\log (x) \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )\right )}{\log ^3(x)} \, dx\\ &=20 \int \left (-\frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)}+\frac {x^2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)}+\frac {2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)}\right ) \, dx+\int \left (\frac {4 x \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)}+\frac {(-2+\log (x)) \log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^3(x)}\right ) \, dx\\ &=4 \int \frac {x \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)} \, dx-20 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+20 \int \frac {x^2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+40 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+\int \frac {(-2+\log (x)) \log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^3(x)} \, dx\\ &=4 \int \frac {x \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)} \, dx-20 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (-5 x+e^{3+2 x} (2+x)\right ) \log ^2(x)} \, dx+20 \int \frac {x^2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (-5 x+e^{3+2 x} (2+x)\right ) \log ^2(x)} \, dx+40 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+\int \left (-\frac {2 \log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^3(x)}+\frac {\log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {\log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^3(x)} \, dx\right )+4 \int \frac {x \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)} \, dx-20 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (-5 x+e^{3+2 x} (2+x)\right ) \log ^2(x)} \, dx+20 \int \frac {x^2 \log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\left (-5 x+e^{3+2 x} (2+x)\right ) \log ^2(x)} \, dx+40 \int \frac {\log \left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{(2+x) \left (2 e^{3+2 x}-5 x+e^{3+2 x} x\right ) \log ^2(x)} \, dx+\int \frac {\log ^2\left (e^{3+2 x}-\frac {5 x}{2+x}\right )}{\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.40, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (-20 x+e^{3+2 x} \left (16 x+16 x^2+4 x^3\right )\right ) \log (x) \log \left (\frac {-5 x+e^{3+2 x} (2+x)}{2+x}\right )+\left (20 x+10 x^2+e^{3+2 x} \left (-8-8 x-2 x^2\right )+\left (-10 x-5 x^2+e^{3+2 x} \left (4+4 x+x^2\right )\right ) \log (x)\right ) \log ^2\left (\frac {-5 x+e^{3+2 x} (2+x)}{2+x}\right )}{\left (-10 x-5 x^2+e^{3+2 x} \left (4+4 x+x^2\right )\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 29, normalized size = 1.16 \begin {gather*} \frac {x \log \left (\frac {{\left (x + 2\right )} e^{\left (2 \, x + 3\right )} - 5 \, x}{x + 2}\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.87, size = 67, normalized size = 2.68 \begin {gather*} \frac {x \log \left (x e^{\left (2 \, x + 3\right )} - 5 \, x + 2 \, e^{\left (2 \, x + 3\right )}\right )^{2} - 2 \, x \log \left (x e^{\left (2 \, x + 3\right )} - 5 \, x + 2 \, e^{\left (2 \, x + 3\right )}\right ) \log \left (x + 2\right ) + x \log \left (x + 2\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 1011, normalized size = 40.44
method | result | size |
risch | \(\frac {x \ln \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )^{2}}{\ln \relax (x )^{2}}-\frac {x \left (i \pi \,\mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{3}+2 \ln \left (2+x \right )\right ) \ln \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{\ln \relax (x )^{2}}+\frac {x \left (-\pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2} \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2} \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right )^{2} \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{6}+4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )-4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (\frac {i}{2+x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{2}-4 i \ln \left (2+x \right ) \pi \,\mathrm {csgn}\left (i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{2}+4 i \ln \left (2+x \right ) \pi \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{2 x +3}-5\right ) x +2 \,{\mathrm e}^{2 x +3}\right )}{2+x}\right )^{3}+4 \ln \left (2+x \right )^{2}\right )}{4 \ln \relax (x )^{2}}\) | \(1011\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 63, normalized size = 2.52 \begin {gather*} \frac {x \log \left ({\left (x e^{3} + 2 \, e^{3}\right )} e^{\left (2 \, x\right )} - 5 \, x\right )^{2} - 2 \, x \log \left ({\left (x e^{3} + 2 \, e^{3}\right )} e^{\left (2 \, x\right )} - 5 \, x\right ) \log \left (x + 2\right ) + x \log \left (x + 2\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.62, size = 31, normalized size = 1.24 \begin {gather*} \frac {x\,{\ln \left (-\frac {5\,x-{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^3\,\left (x+2\right )}{x+2}\right )}^2}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.96, size = 26, normalized size = 1.04 \begin {gather*} \frac {x \log {\left (\frac {- 5 x + \left (x + 2\right ) e^{2 x + 3}}{x + 2} \right )}^{2}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________