Optimal. Leaf size=15 \[ \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x+(3+x) \log (x)}{\log (x)}} \left (-x+x \log (x)+(-2+x) \log ^2(x)\right )}{x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3+x+\frac {x}{\log (x)}} \left (-x+x \log (x)+(-2+x) \log ^2(x)\right )}{x^3 \log ^2(x)} \, dx\\ &=\int \left (\frac {e^{3+x+\frac {x}{\log (x)}} (-2+x)}{x^3}-\frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log ^2(x)}+\frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log (x)}\right ) \, dx\\ &=\int \frac {e^{3+x+\frac {x}{\log (x)}} (-2+x)}{x^3} \, dx-\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log ^2(x)} \, dx+\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log (x)} \, dx\\ &=\int \left (-\frac {2 e^{3+x+\frac {x}{\log (x)}}}{x^3}+\frac {e^{3+x+\frac {x}{\log (x)}}}{x^2}\right ) \, dx-\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log ^2(x)} \, dx+\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log (x)} \, dx\\ &=-\left (2 \int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^3} \, dx\right )+\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2} \, dx-\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log ^2(x)} \, dx+\int \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 15, normalized size = 1.00 \begin {gather*} \frac {e^{3+x+\frac {x}{\log (x)}}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 18, normalized size = 1.20 \begin {gather*} \frac {e^{\left (\frac {{\left (x + 3\right )} \log \relax (x) + x}{\log \relax (x)}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 20, normalized size = 1.33 \begin {gather*} \frac {e^{\left (\frac {x \log \relax (x) + x + 3 \, \log \relax (x)}{\log \relax (x)}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 1.40
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {x \ln \relax (x )+3 \ln \relax (x )+x}{\ln \relax (x )}}}{x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 14, normalized size = 0.93 \begin {gather*} \frac {e^{\left (x + \frac {x}{\log \relax (x)} + 3\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 15, normalized size = 1.00 \begin {gather*} \frac {{\mathrm {e}}^3\,{\mathrm {e}}^{\frac {x}{\ln \relax (x)}}\,{\mathrm {e}}^x}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {x + \left (x + 3\right ) \log {\relax (x )}}{\log {\relax (x )}}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________