Optimal. Leaf size=33 \[ 1+(1-x)^2+\log \left (1+4 e^{x/2}-e^x-x\right )+\log ^2(x) \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x-4 x^2+2 x^3+e^{x/2} \left (6 x-8 x^2\right )+e^x \left (-x+2 x^2\right )+\left (-2-8 e^{x/2}+2 e^x+2 x\right ) \log (x)}{-x-4 e^{x/2} x+e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3+e^{x/2} (6-8 x)-4 x+2 x^2+e^x (-1+2 x)}{-1-4 e^{x/2}+e^x+x}+\frac {2 \log (x)}{x}\right ) \, dx\\ &=2 \int \frac {\log (x)}{x} \, dx+\int \frac {3+e^{x/2} (6-8 x)-4 x+2 x^2+e^x (-1+2 x)}{-1-4 e^{x/2}+e^x+x} \, dx\\ &=\log ^2(x)+\int \left (-1+2 x+\frac {2+2 e^{x/2}-x}{-1-4 e^{x/2}+e^x+x}\right ) \, dx\\ &=-x+x^2+\log ^2(x)+\int \frac {2+2 e^{x/2}-x}{-1-4 e^{x/2}+e^x+x} \, dx\\ &=-x+x^2+\log ^2(x)+2 \operatorname {Subst}\left (\int \frac {2+2 e^x-2 x}{-1-4 e^x+e^{2 x}+2 x} \, dx,x,\frac {x}{2}\right )\\ &=-x+x^2+\log ^2(x)+2 \operatorname {Subst}\left (\int \frac {2 \left (-1-e^x+x\right )}{1+4 e^x-e^{2 x}-2 x} \, dx,x,\frac {x}{2}\right )\\ &=-x+x^2+\log ^2(x)+4 \operatorname {Subst}\left (\int \frac {-1-e^x+x}{1+4 e^x-e^{2 x}-2 x} \, dx,x,\frac {x}{2}\right )\\ &=-x+x^2+\log ^2(x)+4 \operatorname {Subst}\left (\int \left (\frac {1}{-1-4 e^x+e^{2 x}+2 x}+\frac {e^x}{-1-4 e^x+e^{2 x}+2 x}-\frac {x}{-1-4 e^x+e^{2 x}+2 x}\right ) \, dx,x,\frac {x}{2}\right )\\ &=-x+x^2+\log ^2(x)+4 \operatorname {Subst}\left (\int \frac {1}{-1-4 e^x+e^{2 x}+2 x} \, dx,x,\frac {x}{2}\right )+4 \operatorname {Subst}\left (\int \frac {e^x}{-1-4 e^x+e^{2 x}+2 x} \, dx,x,\frac {x}{2}\right )-4 \operatorname {Subst}\left (\int \frac {x}{-1-4 e^x+e^{2 x}+2 x} \, dx,x,\frac {x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 31, normalized size = 0.94 \begin {gather*} -2 x+x^2+\log \left (1+4 e^{x/2}-e^x-x\right )+\log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 0.70 \begin {gather*} x^{2} + \log \relax (x)^{2} - 2 \, x + \log \left (x - 4 \, e^{\left (\frac {1}{2} \, x\right )} + e^{x} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 0.70 \begin {gather*} x^{2} + \log \relax (x)^{2} - 2 \, x + \log \left (x - 4 \, e^{\left (\frac {1}{2} \, x\right )} + e^{x} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 0.73
method | result | size |
risch | \(\ln \relax (x )^{2}+x^{2}-2 x +\ln \left ({\mathrm e}^{x}-4 \,{\mathrm e}^{\frac {x}{2}}+x -1\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 23, normalized size = 0.70 \begin {gather*} x^{2} + \log \relax (x)^{2} - 2 \, x + \log \left (x - 4 \, e^{\left (\frac {1}{2} \, x\right )} + e^{x} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.47, size = 23, normalized size = 0.70 \begin {gather*} \ln \left (x+{\mathrm {e}}^x-4\,\sqrt {{\mathrm {e}}^x}-1\right )-2\,x+{\ln \relax (x)}^2+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 0.79 \begin {gather*} x^{2} - 2 x + \log {\relax (x )}^{2} + \log {\left (x - 4 e^{\frac {x}{2}} + e^{x} - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________