Optimal. Leaf size=25 \[ \frac {x^2}{\left (e^{e^{x^2}+x^{\frac {1}{x}}}-\frac {14 x}{5}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} \left (250 x-500 e^{x^2} x^3+x^{\frac {1}{x}} (-250+250 \log (x))\right )}{125 e^{3 e^{x^2}+3 x^{\frac {1}{x}}}-1050 e^{2 e^{x^2}+2 x^{\frac {1}{x}}} x+2940 e^{e^{x^2}+x^{\frac {1}{x}}} x^2-2744 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {250 e^{e^{x^2}+x^{\frac {1}{x}}} \left (x-2 e^{x^2} x^3-x^{\frac {1}{x}}+x^{\frac {1}{x}} \log (x)\right )}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\\ &=250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} \left (x-2 e^{x^2} x^3-x^{\frac {1}{x}}+x^{\frac {1}{x}} \log (x)\right )}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\\ &=250 \int \left (-\frac {e^{e^{x^2}+x^{\frac {1}{x}}} x \left (-1+2 e^{x^2} x^2\right )}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}+\frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}} (-1+\log (x))}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}\right ) \, dx\\ &=-\left (250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x \left (-1+2 e^{x^2} x^2\right )}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\right )+250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}} (-1+\log (x))}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\\ &=-\left (250 \int \left (-\frac {e^{e^{x^2}+x^{\frac {1}{x}}} x}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}+\frac {2 e^{e^{x^2}+x^2+x^{\frac {1}{x}}} x^3}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}\right ) \, dx\right )+250 \int \left (-\frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}}}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}+\frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}} \log (x)}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3}\right ) \, dx\\ &=250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx-250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}}}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx+250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}} \log (x)}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx-500 \int \frac {e^{e^{x^2}+x^2+x^{\frac {1}{x}}} x^3}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\\ &=250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx-250 \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}}}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx-250 \int \frac {\int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}}}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx}{x} \, dx-500 \int \frac {e^{e^{x^2}+x^2+x^{\frac {1}{x}}} x^3}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx+(250 \log (x)) \int \frac {e^{e^{x^2}+x^{\frac {1}{x}}} x^{\frac {1}{x}}}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.45, size = 26, normalized size = 1.04 \begin {gather*} \frac {25 x^2}{\left (5 e^{e^{x^2}+x^{\frac {1}{x}}}-14 x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 44, normalized size = 1.76 \begin {gather*} \frac {25 \, x^{2}}{196 \, x^{2} - 140 \, x e^{\left (x^{\left (\frac {1}{x}\right )} + e^{\left (x^{2}\right )}\right )} + 25 \, e^{\left (2 \, x^{\left (\frac {1}{x}\right )} + 2 \, e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 1.00
method | result | size |
risch | \(\frac {25 x^{2}}{\left (14 x -5 \,{\mathrm e}^{x^{\frac {1}{x}}+{\mathrm e}^{x^{2}}}\right )^{2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 44, normalized size = 1.76 \begin {gather*} \frac {25 \, x^{2}}{196 \, x^{2} - 140 \, x e^{\left (x^{\left (\frac {1}{x}\right )} + e^{\left (x^{2}\right )}\right )} + 25 \, e^{\left (2 \, x^{\left (\frac {1}{x}\right )} + 2 \, e^{\left (x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 108, normalized size = 4.32 \begin {gather*} -\frac {25\,x^5\,\left (x-2\,x^3\,{\mathrm {e}}^{x^2}-x^{1/x}+x^{1/x}\,\ln \relax (x)\right )}{\left (25\,{\mathrm {e}}^{2\,{\mathrm {e}}^{x^2}+2\,x^{1/x}}-140\,x\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}+x^{1/x}}+196\,x^2\right )\,\left (2\,x^6\,{\mathrm {e}}^{x^2}-x^4+x^{1/x}\,x^3-x^{1/x}\,x^3\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.92, size = 44, normalized size = 1.76 \begin {gather*} \frac {x^{2}}{\frac {196 x^{2}}{25} - \frac {28 x e^{e^{x^{2}} + e^{\frac {\log {\relax (x )}}{x}}}}{5} + e^{2 e^{x^{2}} + 2 e^{\frac {\log {\relax (x )}}{x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________