Optimal. Leaf size=20 \[ e^{-5-x} \left (9+\frac {256}{x}+\frac {15 x}{4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 34, normalized size of antiderivative = 1.70, number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {12, 2199, 2194, 2177, 2178, 2176} \begin {gather*} \frac {15}{4} e^{-x-5} x+9 e^{-x-5}+\frac {256 e^{-x-5}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-5-x} \left (-1024-1024 x-21 x^2-15 x^3\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-21 e^{-5-x}-\frac {1024 e^{-5-x}}{x^2}-\frac {1024 e^{-5-x}}{x}-15 e^{-5-x} x\right ) \, dx\\ &=-\left (\frac {15}{4} \int e^{-5-x} x \, dx\right )-\frac {21}{4} \int e^{-5-x} \, dx-256 \int \frac {e^{-5-x}}{x^2} \, dx-256 \int \frac {e^{-5-x}}{x} \, dx\\ &=\frac {21 e^{-5-x}}{4}+\frac {256 e^{-5-x}}{x}+\frac {15}{4} e^{-5-x} x-\frac {256 \text {Ei}(-x)}{e^5}-\frac {15}{4} \int e^{-5-x} \, dx+256 \int \frac {e^{-5-x}}{x} \, dx\\ &=9 e^{-5-x}+\frac {256 e^{-5-x}}{x}+\frac {15}{4} e^{-5-x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 1.20 \begin {gather*} \frac {e^{-5-x} \left (1024+36 x+15 x^2\right )}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 21, normalized size = 1.05 \begin {gather*} \frac {{\left (15 \, x^{2} + 36 \, x + 1024\right )} e^{\left (-x - 5\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 30, normalized size = 1.50 \begin {gather*} \frac {{\left (15 \, x^{2} e^{\left (-x\right )} + 36 \, x e^{\left (-x\right )} + 1024 \, e^{\left (-x\right )}\right )} e^{\left (-5\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 1.10
method | result | size |
risch | \(\frac {\left (15 x^{2}+36 x +1024\right ) {\mathrm e}^{-x -5}}{4 x}\) | \(22\) |
gosper | \(\frac {\left (15 x^{2}+36 x +1024\right ) {\mathrm e}^{-x} {\mathrm e}^{-5}}{4 x}\) | \(24\) |
default | \(\frac {{\mathrm e}^{-5} \left (36 \,{\mathrm e}^{-x}+15 x \,{\mathrm e}^{-x}+\frac {1024 \,{\mathrm e}^{-x}}{x}\right )}{4}\) | \(30\) |
norman | \(\frac {\left (256 \,{\mathrm e}^{-5}+9 x \,{\mathrm e}^{-5}+\frac {15 x^{2} {\mathrm e}^{-5}}{4}\right ) {\mathrm e}^{-x}}{x}\) | \(32\) |
meijerg | \(-256 \,{\mathrm e}^{-5} \left (-\frac {1}{x}+1+\frac {-2 x +2}{2 x}-\frac {{\mathrm e}^{-x}}{x}+\expIntegralEi \left (1, x\right )\right )-\frac {15 \,{\mathrm e}^{-5} \left (1-\frac {\left (2 x +2\right ) {\mathrm e}^{-x}}{2}\right )}{4}-\frac {21 \,{\mathrm e}^{-5} \left (1-{\mathrm e}^{-x}\right )}{4}+256 \,{\mathrm e}^{-5} \expIntegralEi \left (1, x\right )\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 35, normalized size = 1.75 \begin {gather*} -256 \, {\rm Ei}\left (-x\right ) e^{\left (-5\right )} + \frac {15}{4} \, {\left (x + 1\right )} e^{\left (-x - 5\right )} + 256 \, e^{\left (-5\right )} \Gamma \left (-1, x\right ) + \frac {21}{4} \, e^{\left (-x - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 21, normalized size = 1.05 \begin {gather*} \frac {{\mathrm {e}}^{-x-5}\,\left (15\,x^2+36\,x+1024\right )}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.95 \begin {gather*} \frac {\left (15 x^{2} + 36 x + 1024\right ) e^{- x}}{4 x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________